HOW TO POINT A DISH ANTENNA

A2.1 INSTALLING A SATELLITE DISH USING *HD RANGER 2*

A2.1.1 A bit of history

That's it, a bit of history. First artificial satellite "Sputnik I" was launched 4th of October of 1957 by former Soviet Union. It was about the size of a basketball with a weight below 100 Kgrs but went down in history as the start point for the space age. For three weeks it was transmitting radio signals to the excited scientist on the ground that were gathering fundamental data for the launches to come.

![Figure A2.1.](image1)

The first telecommunications satellite was Telstar I launched in 1962. Some people refers to Echo I as the World's first in 1960 but it was a passive signal reflector as opposite to Telstar that carried electronics on board like today's satellites. It was also the first to use the modern transponder concept where the satellite "transposes" the up-link frequency (6,390 GHz in Telstar) to another down-link frequency (4,170 GHz in this case). Telstar I trans-mitter power was 3 Watts and the antenna was omnidirectional.

![Figure A2.2.](image2)
The antenna used to receive the test transmission from Telstar I was a huge horn inside a bubble radome 48 metres high. Only four decades later we have broken all records and we have high power DBS geostationary satellites carrying a lot of digital transponders on board and we start to worry about space junk having thousands of satellites in orbit, plenty of them beyond its useful life. Satellites use highly efficient directional antennas and very high transmitters power, digital transponders, meaning in plain words that we can receive hundreds of TV channels with a small, fix, cheap, 60 cm dish.

![Satellite Image]

Figure A2.3.

Modern broadcast satellites use geostationary orbits. This simply means that they could be seen from the ground hanging in the sky at the same exact position all the time and therefore receiving signals from them does not require complex steering systems. A piece of cake.

All we need to do to receive their signals with the enormous amount of programs they carry is to set up the satellite receiving antenna properly and to ensure that the signals are received with the proper quality levels...and here is where the HD RANGER 2 comes into action.

A2.1.2 The basics

A professional installer will instantly tell us from the top of his head what to have in the to-do-list if we want to install a satellite dish properly. Surely the list will require us to select the proper mount kit and dish size from the numerous options available in the market, pick a good location for the dish, free of obstacles to the south (in the north hemisphere) or to the north (in the south hemisphere), etc.

Other than the mechanical bits and pieces the dish is made of two clearly differentiated parts, the reflector and the LNB.

The reflector is passive and simply reflects signals from the satellite in such a way that the beam is collimated to the LNB's mounting point.
The LNB (Low Noise Block-converter) is an active device fruit of the great evolution of RF circuit manufacturing and includes amplifiers, oscillators and frequency converters in a small low cost package. The first section is made of a device called *polarisation shifter* that receives one polarisation or the other depending on the supply voltage given to the LNB. This voltage is necessary to supply the active devices inside the LNB.

Signals broadcast from the satellites use two polarisations simultaneously. These can be LINEAR VERTICAL/HORIZONTAL or CIRCULAR LEFT/RIGHT depending on the type of transmitting antenna used in the satellite. The transponder frequencies for each polarisation are carefully selected to avoid interference to the other polarisation commonly referred to as the crossed polarisation. In general they are imbricate or in other words frequencies used in one polarisation are free in the crossed polarisation and viceversa.

<table>
<thead>
<tr>
<th>SUPPLY VOLTAGE</th>
<th>POLARISATION</th>
<th>BAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 VDC</td>
<td>VERTICAL</td>
<td>LOW</td>
</tr>
<tr>
<td>18 VDC</td>
<td>HORIZONTAL</td>
<td>LOW</td>
</tr>
<tr>
<td>13 VDC + 22 kHz</td>
<td>VERTICAL</td>
<td>HIGH</td>
</tr>
<tr>
<td>18 VDC + 22 kHz</td>
<td>HORIZONTAL</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Modern universal LNB's use mostly linear polarisation and have also the capability to select a different input frequency range depending on a control signal called 22 kHz switching tone which is overlapped with the supply voltage.

In other words our LNB will output a different set of satellite transponders depending on which supply voltage we use.
A2.1.3 **Coarse dish alignment**

We can use different techniques to find out where in the sky the satellite we want is located. They can be anything from a pure guessing game to a sophisticated procedure.

The satellites we are interested in are all positioned in a geostationary orbit above the earth's equator. Each of them has a fix given position in that orbit, something like a street number, that we can know from various sources. Orbital position is an important datum so it is commonly part of the name as well.

For example ASTRA 19E refers to ASTRA satellite which is positioned at 19 degrees East in the orbit.

Knowing where we are in terms of latitude and longitude is also easy. We can read that information from a map or even from our car's navigation system if we have one.
With this information in hand we can calculate the elevation and azimuth we should put on the dish to begin our coarse antenna alignment. There are formulas to do that but some websites are again quite useful. There are also free mobile applications, as Dish Aligner, which calculates the elevation and azimuth and also your current location determined by the GPS of the mobile phone. This one is especially interesting for you can select the satellite you want and then position yourself on a graphical map:

http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html/

For example if we take ASTRA (19E position) and select a location somewhere in Germany:

- Latitude: 50 degrees North
- Longitude: 12 degrees East

The required elevation and azimuth for the dish are:

- Azimuth: 170 degrees
- Elevation: 31 degrees

Elevation must be measured from the horizontal level (may be using an inclinometer) and azimuth from magnetic north (with a compass) there are some applications for smartphones, as mentioned above, that include compass and inclinometer, although it should be noted that the measurements made by mobile phone may be affected by interferences from the antenna itself. It is normally more practical to start with azimuth moving the dish horizontally and then look for the elevation.
And the **HD RANGER 2** comes into action. Our dish is now more or less "looking" in the direction where we presume our "bird" is parked. With the **HD RANGER 2** connected to the output of the LNB we select satellite frequency range, antenna alignment mode, span of 200 MHz and set the power supply voltage to one of the possible values. We will take for example 13 VDC, which will take us to the VERTICAL polarisation and LOW band. We can use 80 dBµV for the reference level for we can change that at pleasure depending on the amount of signal we get.

Something will come up on the **HD RANGER 2** screen. It will normally be a weak signal that may come from the desired satellite or from the neighbour ones for the dish is not properly tuned up yet. Swing the dish slightly horizontally and vertically until a decent signal is shown on the screen.

There we have a satellite but which one is it? Most probably the signals we are looking at are digital transponders from the unknown satellite. The **HD RANGER 2** can be operated in frequency or channel modes.

Tune any of those digital channels in frequency mode using the joystick and the markers shown on the screen. The **HD RANGER 2** will tell you what satellite and/or orbital position you are on in a matter of seconds!

If we are unlucky and this is not the satellite we want then we only need to move the dish slightly to pick the signal from the next satellite and repeat the process.

Figure A2. 8.
A2.1.5 Fine tuning the dish

Once we know for certain that we are on ASTRA 19E it is time to make fine adjustments to the dish to optimise the alignment. There are two goals to achieve. On the one hand we want to receive the maximum amount of power possible and on the other hand we need to make sure we minimise the interference from the crossed polarisation.

In order to maximise the received signal power we need only to move the dish’s azimuth and elevation very carefully ensuring that the display of the spectrum analyser show us the highest values possible.

As you move the dish’s position you will see the signal change on the spectrum analyser. Cross-polarisation is adjusted by rotating the LNB on its axis. As you do so you will see on the HD RANGER 2 screen how the channels interfering from the opposite polarisation go up and down the objective being to leave the LNB in such a position that those channels are as low as possible.

A2.1.6 Testing signal quality

The HD RANGER 2 is the ideal instrument for quick and effective checks of signal quality not only because it shows all measurements in one single screen but also because the meter doesn’t require bothering configuration processes.

► Option 1: Frequency mode

I can tune in frequency mode all channels coming up in the screen, all of them or the most representative ones only. We can move our cursor in frequency mode, in spectrum, through out the band. When we stop on a channel, the meter will acquire all the settings needed to measure the channel without bothering us. Then pressing the measurement button and voilà.

► Option 2: Channel mode

I can select channel mode and a satellite channel table from the list. The HD RANGER 2 has several of them preloaded but this can be changed using software application.

Once we select the desired table, ASTRA 19E in this case, we can browse the channels at once. There are channel tables grouped by polarisation or band or those with all channels in the satellite.
Look what we’ve got

The HD RANGER 2 can also display the free to air programs available in the satellite. That is very practical not so much for the picture itself but for amount of interesting data related to the transponders we can display as well. This includes:

Tuned video information.

► **TYPE:** Encoding type and video transmission rate.
► **FORMAT:** Resolution (horizontal x vertical), aspect ratio and frequency.
► **PROFILE:** Profile level.
► **PID:** Video program identifier.

Tuned service information.

► **NETWORK:** Television distribution network (Terrestrial). Orbital position (Satellite).
► **PROVIDER:** Program provider name.
► **NID:** Network identifier where the signal is distributed.
► **ONID:** Identifier of the original network where the signal originates.
► **TSID:** Transport stream identifier.
► **SID:** Service Identifier.
► **MHP:** Interactive service.
► **LCN:** Logic Channel Number. It is the first logic number assigned to the first channel in the receiver.
► **+Info:** Additional service information.
► **FREE/SCRAMBLED:** Free/scrambled transmission.
► **DTV/DS:** Standard type of transmission.

Tuned audio information.

► **TYPE:** Type of audio encoding and transmission speed
► **FORMAT:** Service audio format. Bit depth; sampling frequency; sound reproduction.
► **LANGUAGE:** Broadcasting language.
► **PID:** ID of the audio program.

At any time it is possible to display the SERVICE LIST pressing the F3 key and show all the programs and services available within the tuned channel. Selecting one particular channel or service becomes very intuitive.