PROLITE-50/51/52

REFLECTÓMETRO ÓPTICO (OTDR) *OPTICAL REFLECTOMETER (OTDR)*

NOTAS SOBRE SEGURIDAD

Antes de manipular el equipo leer el manual de instrucciones y muy especialmente el apartado PRESCRIPCIONES DE SEGURIDAD.

El símbolo (!) sobre el equipo significa "CONSULTAR EL MANUAL DE INSTRUCCIONES". En este manual puede aparecer también como símbolo de advertencia o precaución.

Recuadros de ADVERTENCIAS Y PRECAUCIONES pueden aparecer a lo largo de este manual para evitar riesgos de accidentes a personas o daños al equipo u otras propiedades.

SAFETY NOTES

Read the user's manual before using the equipment, mainly " SAFETY RULES " paragraph.

The symbol 2 on the equipment means "SEE USER'S MANUAL". In this manual may also appear as a Caution or Warning symbol.

Warning and Caution statements may appear in this manual to avoid injury hazard or damage to this product or other property.

SUMARIO CONTENTS

The Manual español.....

@ English manual

ÍNDICE

1.	GENERA	۷	1
	1.1 Espe	cificaciones	3
2.	PRESCR	IPCIONES DE SEGURIDAD	5
	2.1 Gene	erales	5
	2.2 Preca	auciones Específicas	5
	2.3 Ejem	plos Descriptivos de las Categorías de Sobretensión	6
3.	DESCRIP	PCIÓN DE MANDOS Y ELEMENTOS	7
	3.1 Pane	l de conexiones	7
	3.2 Tecla	do de funciones.	8
л			10
4.	4 1 Princi	inio de funcionamiento del PROLITE-50/51/52	10
	4.1 1 1110 4.2 Defin	ición básica y clasificación de los eventos	10
	4.2 Denn	ventos	10
	4.2.1	Eventos de reflexión	11
	4.2.1.1	Eventos de reliexión	
	4.2.1.2	Linengesión de aventes	10
	4.2.1.0 4.2 Aplic	ación de las modidas del PPOLITE 50/51/52	12
	4.3 Aprilo	ación de las medidas del PROLITE 50/51/52	12
	4.3.1 C	nálisis de trazes del PROLITE-50/51/52	12
	4.3.2 A	alla de vieualización de trazes del PROLITE 50/51/52	12
	4.4 Tania 111 D	ana de visualización de nazas del 1110En E-50/51/32	12
	4.4.1 F	antana de información del PROLITE 50/51/52	1/
	4.4.2 V	Parámetros do Troza do Modidas	. 14 1/
	4.4.2.1	Lista da avantas	15
	4.4.2.2	Provisión	16
_	4.4.2.3		. 10
5.	PROCES	O DE MEDIDA DE TRAZAS	.17
	5.1 Introc	ducción a la Interficie Gráfica de Usuario (GUI)	. 17
	5.1.1 B	arra de menu del PROLITE-50/51/52	. 18
	5.1.2 E	stado de carga de la bateria	. 18
	5.2 Proce		. 19
	5.2.1 C	configuracion de parametros en la barra de menu del PROLITE-50/51/52.	.20
	5.2.2 N	ledida de la traza - Auto	.36
	5.2.3 N	ledida de trazas - Manual	.38
	5.2.4 N	ledida de trazas – Motivos de errores en las medi das	.39
	5.3 Venta	ana de información.	.39
	5.3.1 C	conmutar entre los item de la ventana de información.	. 39
	5.3.2 R	lepaso de la Lista de Eventos	. 39
	5.3.3 C	Sursores	. 40
	5.4 Aume	ento y disminución de la visualización de la traza	. 40
	5.5 Guar	dar traza	. 41
	5.6 Visua	ilización de trazas guardadas	.42
	5.7 Desc	arga de las trazas guardadas al PC	. 43

6. MA	ANTENIMIENTO	44
6.1	Mantenimiento de las baterías	44
6.2	Limpieza de las interfaces	45
6.3	Requerimientos de calibración	48
6.4	Recomendaciones de limpieza	48

REFLECTÓMETRO ÓPTICO (OTDR) PROLITE-50/51/52

1. GENERAL

La serie **PROLITE-50/51/52** de **PROMAX** es la elección recomendada para la medida de las especificaciones de fibras ópticas. Con el **PROLITE-50/51/52**, puede realizar el análisis de una única fibra óptica o de una instalación de fibras completa. En especial, permite valorar las pérdidas y la distribución de los fenómenos en una instalación de fibra óptica.

La serie **PROLITE-50/51/52** de **PROMAX** comprueba la calidad de la transmisión de la fibra óptica mediante la medida de la dispersión de luz de retorno. Organizaciones de normalización internacional como la Unión Internacional de Telecomunicaciones (ITU) define la dispersión de luz como un procedimiento efectivo para la medida de las pérdidas en fibras ópticas. La dispersión de retorno es también el único modo efectivo de inspeccionar conectores, aplicable también a la medida de la longitud de las fibras ópticas.

Por tanto, el **PROLITE-50/51/52** es una herramienta muy útil para la fabricación de fibras ópticas, su instalación y mantenimiento.

El principio de funcionamiento del **PROLITE-50/51/52** consiste en revisar los "fenómenos" que se producen en las fibras ópticas (por ejemplo, las irregularidades y los conectores), lo que resulta muy útil para el control de calidad por parte de los fabricantes, instaladores y técnicos de mantenimiento de las fibras ópticas. El **PROLITE-50/51/52** puede ayudar a identificar las irregularidades en las fibras ópticas, localizarlas y medir su atenuación, pérdidas relevantes y homogenidad.

El **PROLITE-50/51/52** es más útil para trabajos de campo. Puede ayudar a comprobar la idoneidad de un circuito basado en instalaciones de fibra óptica. Con el objeto de realizar futuros mantenimientos y controles de calidad de las transmisiones es necesario registrar las características de las fibras ópticas, que incluyen la medida del trayecto óptico, las pérdidas totales y las pérdidas en los empalmes y los conectores.

Además, el **PROLITE-50/51/52** es fácil de utilizar, pequeño y compacto. Siguiendo los principios de la ergonomía, se ha diseñado para satisfacer los requisitos del usuario con una gran pantalla LCD e interfaz gráfica. Permite guardar y transferir los datos medidos de las gráficas de características a un PC mediante el software suministrado para su análisis posterior, informe e impresión.

Los PROLITE-50/51/52 se caracterizan por:

- Aplicaciones básicas:
 - a) Medida de la longitud de la fibra óptica.
 - b) Medida de la distancia entre dos puntos de la fibra.
 - c) Localización de fallos y discontinuidades en fibras ópticas.
 - d) Representación de la curva de distribución para fibras ópticas.
 - e) Medida del coeficiente de atenuación de fibras ópticas.
 - f) Medida de las pérdidas entre dos puntos de la fibra óptica.
 - g) Medida de las pérdidas en los empalmes.
 - h) Medida de los fenómenos de reflexión de fibras ópticas.

Para un evento específico (variación en la calidad de transmisión debido a fallos causados por uniones, conectores, curvaturas, etc). las siguientes medidas pueden ser realizadas con el **PROLITE-50/51/52**:

- a) Para cada evento: distancia, pérdidas y reflexiones;
- b) Para cada sección de la fibra óptica: longitud y pérdidas en dB o dB/km;
- c) Para la cadena completa de fibra óptica: longitud y pérdidas en dB;
- Pantalla LCD de gran formato con ajuste manual del contraste
- Pantalla LCD retroiluminada para uso nocturno
- Facilidad de uso con pantalla de representación gráfica
- Función de almacenamiento de trazas
- Puerto de carga de datos RS232/USB
- Software de análisis mediante PC y gestión de trazas para analizar y transmitir los datos previamente almacenados.
- Función de autodesconexión para ahorro de la vida de las baterías
- Alimentador AC.

1.1 Especificaciones

Longitud de onda (nm)	PROLITE-50 PROLITE-51	1310/1550 nm. 1310/1550/1625 nm.
	PROLITE-52	1625 nm.
Margen Dinámico ¹	PROLITE-50	24 dB.
	PROLITE-51	38/37/37 dB.
	PROLITE-52	37 dB.
Zona muerta de eventos	PROLITE-50	10 m.
	PROLITE-51	1,5 m.
	PROLITE-52	1,5 m.
Zona muerta de atenuación	² PROLITE-50	25 m.
	PROLITE-51	10 m.
	PROLITE-52	10 m.
Tipo de conector	FC / PC (intercan	nbiable SC, ST).
Tipo de fibra	Monomodo.	
Ancho de pulso	5 nS / 10 nS / 12	nS / 30 nS / 100 nS / 275 nS / 300 nS1
	μS / 2,5 μS / 10 μ	S / 20 μS.
Margenes seleccionables	0,3 / 1,3 / 2,5 / 5 /	/ 10 / 20 / 40 / 80 / 120 / 160 / 240 km.
Precisión en la medida de		
longitud	± (1 m + 5 x 10-5	x Distancia + espacio de referencia).
Precision en la detección		
de reflejos	± 4 dB.	
Precision en la detección		
de atenuación	± 0,05 dB / dB.	
de modida		200 outrice de test
uemedida	PROLITE-50	1000 curvas de test
	PROLITE-52	1000 curvas de test
Localizador Visual de Fallo		
Potencia de salida	PROLITE-52	> -3 dBm
Distancia máxima	PROLITE-52	5 Km.
Transmisión de datos	BS-232 / puerto I	ISB
Alimentación interna	Batería recargabl	e NI MH.
Alimentación	Externa 13.8 V D	C 1.2 A.
Autonomia de la batería	Unas 5 horas de	funcionamiento a partir de una recarga o
	más de 20 horas	en modo standby.
CONDICIONES AMBIENTAL	ES DE FUNCION	AMIENTO
Operación	Uso interior, altitu	id hasta 2000m.
Margen de temperatura		
ambiente	0 °C a +40 °C.	
Humedad relativa	Máx 80%, sin cor	ndensación.

¹ El margen dinámico se mide sobre la anchura máxima del pulso durante un tiempo medio de 3 minutos.

² Condiciones para la medida a ciegas: Los fenómenos de reflexión se producen dentro de una distancia de 4 km; la intraciada adiciada a ciegas: Los fenómenos de reflexión se producen dentro de una distancia de 4 km;

la intensidad reflejada es menor de - 35 dB ; y la zona ciega se mide sobre la anchura mínima de pulso.

CARACTERÍSTI Dimensiones	CAS MECÁNICAS 220 (Al) x 110 (An) x 70 (Pr) mm.
Peso	1 kgs.
ACCESORIOS	
AL005	Alimentador AC 100V/240V 50/60 Hz.
	Bolsa de transporte.
0 MI1858	Manual de instrucciones.
	CD con software de comunicación.
	Cable comunicación con PC.
AD500	Adaptador ST (Opcional).
AD502	Adaptador SC (opcional).

RECOMENDACIONES ACERCA DEL EMBALAJE

Se recomienda guardar todo el material de embalaje de forma permanente por si fuera necesario retornar el equipo al Servicio de Asistencia Técnica.

2. PRESCRIPCIONES DE SEGURIDAD

2.1 Generales

- * La seguridad puede verse comprometida si no se aplican las instrucciones dadas en este Manual.
- * Este equipo puede ser utilizado en ambientes con Grado de Polución 1.
- * Al emplear cualquiera de los siguientes accesorios debe hacerse sólo con los tipos especificados a fin de preservar la seguridad:

Alimentador AL-005.

Batería del relog.

- * Tener siempre en cuenta los márgenes especificados tanto para la alimentación como para la medida.
- * Recuerde que las tensiones superiores a 70 V DC ó 33 V AC rms son potencialmente peligrosas.
- * Observar en todo momento las condiciones ambientales máximas especificadas para el aparato.
- * El operador no está autorizado a intervenir en el interior del equipo:

Cualquier cambio en el equipo deberá ser efectuado exclusivamente por personal especializado.

* Seguir estrictamente las recomendaciones de limpieza que se describen en el apartado Mantenimiento.

2.2 Precauciones Específicas

PRECAUCIÓN Se recomienda no mirar directamente al haz. La utilización de dispositivos que no sean los especificados en este manual así como la manipulación interna del equipo pueden ser causa de radiación peligrosa. * Símbolos relacionados con la seguridad:

PROMAX

2.3 Ejemplos Descriptivos de las Categorías de Sobretensión

- Cat I Instalaciones de baja tensión separadas de la red.
- Cat II Instalaciones domésticas móviles.
- Cat III Instalaciones domésticas fijas.
- Cat IV Instalaciones industriales.

3. DESCRIPCIÓN DE MANDOS Y ELEMENTOS

3.1 Panel de conexiones.

Figura 1.- Panel de conexiones.

- [1] [3] Indicadores de encendido y carga.
- [2] Conector del alimentador AC.
- [4] [6] Interfaces de conexión Interfaces RS-232 y USB para la conexión del equipo con el PC. Permite traspasar las trazas almacenadas al PC para análisis posteriores.
- [5] [7] Conectores de Fibra Óptica Conector FC/PC y VLS (solo PROLITE-52) utilizados como interfaz óptico.

PRECAUCIÓN	Radiación laser invisible Por favor evite observar directamente la salida óptica o mantener la mirada fija en el rayo láser.

3.2 Teclado de funciones.

Figura 2.- Interfaz de funcionamiento del PROLITE-50/51/52.

- [1] Encendido / apagado del equipo.
- [2] [4] Funciones principales:

Л‡ __л‡

Permiten desplazarse dentro de los diferentes menús asi como aumentar / disminuir el valor de parámetros de configuración.

Pulsando previamente [en la pantalla de visualización de traza, permite aumentar / disminuir verticalmente el tamaño de la traza.

Permiten desplazarse dentro de los diferentes menús asi como mover horizontalmente los curso<u>res a</u> lo largo de la traza.

Pulsando previamente [en la pantalla de visualización de la traza, permite aumentar / disminuir horizontalmente el tamaño de la traza.

[5] Pulsándolo previamente permite ejecutar las funciones secundarias. También sirve para cancelar las acciones de aumento / disminución de la visualización de traza que se haya realizado.

Funciones principales:

Esta tecla permite pasar las páginas de la Ayuda, cancelar la operación seleccionada, salir del menu de configuración y conmutar entre las ventanas de información de la traza <u>visual</u>izada.

Pulsando previamente [

[7]

[9]

[6]

Tecla para iniciar / parar el proceso de medida.

Pulsar esta tecla para confirmar la operación seleccionada.

Pulsando previamente [SMI/Z] permite revisar los eventos de traza posteriores.

4. INFORMACIÓN BÁSICA DEL PROLITE-50/51/52

4.1 Principio de funcionamiento del PROLITE-50/51/52

OTDR (Reflectómetro óptico en el dominio del tiempo) es un instrumento de medida para identificación de las características de la transmisión por fibra óptica. El instrumento se utiliza principalmente para medir la atenuación de una cadena completa de fibra óptica y proporcionar detalles de la atenuación relativos a la longitud, detección, localización y medida de cualquier fenómeno en la cadena de fibra óptica (los eventos se refieren a fallos provocados por uniones, conectores, y curvaturas cuyos cambios en la transmisión pueden medirse). Su conexión no destructiva del extremo para mediciones rápidas convierte al **PROLITE-50/51/52** en una herramienta indispensable para la fabricación, construcción y mantenimiento de fibras ópticas.

Los fallos y la misma heterogeneidad de la fibra óptica puede provocar una dispersión de Rayleigh sobre los pulsos de luz transmitidos por la fibra óptica. Una parte de los pulsos de luz se dispersan en la dirección contraria lo que se conoce como dispersión de retorno de Rayleigh, lo que proporciona información válida a cerca de la atenuación en función de la longitud.

La información relativa a la distancia se obtiene a partir de la información del tiempo (de ahí la denominación "en el dominio del tiempo" en las siglas **OTDR**). Se produce una reflexión de Fresnel en la frontera entre dos medios con diferente **IOR** (por ejemplo, conexiones inadecuadas, conectores o el extremo de la fibra óptica). Esta reflexión se utiliza para localizar los puntos de discontinuidad en una fibra óptica. La magnitud de la reflexión depende de las diferencias entre **IOR** y lo abrupto que resulte la frontera.

El **OTDR** transmite un pulso de luz por la fibra óptica conectada, y recibe las reflexiones de los eventos así como la potencia de la dispersión de retorno del pulso en el tiempo. El lugar geométrico se mostrará en el **LCD**. El eje Y corresponde a los valores de potencia de la dispersión de retorno expresada en dB, y el eje X corresponde a la distancia.

4.2 Definición básica y clasificación de los eventos

4.2.1 Eventos

Los eventos indican puntos anormales que provocan atenuación o cambio súbito de la potencia de dispersión aparte de la dispersión habitual de la fibra óptica, lo que incluye todos los tipos de pérdidas como las curvaturas, conexiones y discontinuidades. Los puntos correspondientes a los eventos que aparecen indicados en el LCD son puntos anormales que provocan que las trazas se desvíen de su trayectoria en línea recta.

Los eventos pueden clasificarse como eventos de reflexión y eventos de no reflexión.

4.2.1.1 Eventos de reflexión

Cuando algún pulso de energía se dispersa, aparecen los fenómenos de la reflexión. Al producirse la reflexión, aparecen picos en la traza como muestra la figura 3.

Figura 3.- Eventos de reflexión.

4.2.1.2 Eventos de no reflexión.

Los fenómenos de no reflexión tienen lugar en ciertos puntos donde se producen ciertas pérdidas ópticas pero no dispersión de luz. Cuando se producen fenómenos de no reflexión, aparece una disminución de la potencia en la traza tal como se muestra en la figura 4.

Figura 4.- Eventos de no reflexión.

4.2.1.3 Inspección de eventos

El **PROLITE-50/51/52** transmite un pulso de luz en la fibra óptica a inspeccionar, y entonces recibe las señales de luz de retorno, comenzando a calcular la distancia del "evento". Cuanto mayor es la distancia, mayor tiempo precisa la luz dispersada para llegar hasta el instrumento. La distancia del evento puede ser calculada de acuerdo con el tiempo que tarda en recibir las señales de los eventos.

A través de la inspección de las señales dispersadas, propiedades de la fibra óptica, conectores y empalmes pueden ser identificados.

4.3 Aplicación de las medidas del PROLITE-50/51/52

El **PROLITE-50/51/52** muestra la potencia relativa a la distancia de las señales de retorno. Esta información puede utilizarse para identificar las principales propiedades de una instalación de fibra óptica.

4.3.1 Contenidos de medida del PROLITE-50/51/52

- Localización de eventos (distancia), final o ruptura de una instalación de fibra óptica.
- Coeficiente de atenuación de la fibra.
- Pérdida por un único evento (por ejemplo, un empalme óptico), o pérdida total desde el extremo superior hasta el final.
- Margen de un único evento como la reflexión en conectores (o grado de reflexión).
- Medida automática de la pérdida acumulada para un único evento.

4.3.2 Análisis de trazas del PROLITE-50/51/52

El análisis de trazas del **PROLITE-50/51/52** es totalmente automático. Las trazas localizan:

- Eventos de reflexión de las conexiones y empalmes mecánicos.
- Eventos de no reflexión (habitualmente en las uniones de los empalmes).
- Extremo de la fibra óptica (A partir de la detección del primer evento de pérdida que sea mayor del valor umbral final, el final de la fibra óptica puede ser identificado).
- Lista de eventos: tipo de evento, pérdida, reflexión y distancia.

4.4 Pantalla de visualización de trazas del PROLITE-50/51/52

La traza se visualiza en la pantalla del **PROLITE-50/51/52**, como se muestra en la figura 5.

Figura 5.- Pantalla de Visualización de Trazas

4.4.1 Pantalla de trazas del PROLITE-50/51/52

Esta ventana muestra la traza después de una medida.

Definición de Traza: Después de una medida, el diagrama de la potencia de reflexión se mostrará como una función de la distancia. Este diagrama está referido a la traza.

La traza del **PROLITE-50/51/52** muestra el resultado de la medida de una forma gráfica. El eje Y se utiliza para la potencia y el eje X para la distancia como muestra la figura 6.

Figura 6.- Trazas y coordenadas

4.4.2 Ventana de información del PROLITE-50/51/52.

Contenido de esta ventana: parámetros de medida, lista de eventos, marcador A/B y análisis de parámetros.

4.4.2.1 Parámetros de Traza de Medidas

Los parámetros de análisis y medida importantes siempre aparecen en la ventana de información, como muestra la figura 7 y 8:

Figura 7.- Parámetros de Medidas de Traza

Figura 8.- Parámetros de Análisis de Traza

Para la definición y configuración de los items en la figura 7 (Tiempo medio, Escala, IOR, longitud de onda y anchura de pulso), consultar los parámetros de configuración.

Para la definición de los items de la figura 8 (fecha, umbral de reflexión, umbral de no reflexión, coeficiente de dispersión), por favor consultar los parámetros de configuración.

4.4.2.2 Lista de eventos

Para indicar la localización de los eventos inspeccionados. Cualquier fenómeno definido se mostrará en la lista de eventos, por ejemplo, un fenómeno de no reflexión como los puntos de unión y los fenómenos de reflexión como lo conectores, como muestra la figura 9.

A 25.308

8Km/Div

No .: 2/4

Refl .: -38 .12 dB

Attn .: 0.220

B 31.825

5.00 dB /Div

L

Figura 9.- Lista de eventos

trace 1

Ins .L.:

Cum .L.:

Location :

Núm:	Núm. De secuencia de eventos.
Cuatro tipos de eventos:	⊢ Inicio de Fibra; 九 Evento de reflexión ⊣ Final de fibra;
	T Evento de atenuación;
Loc:	Distancia desde inicio del punto al evento;
Refl:	Magnitud de reflexión;
Insi:	Pérdida de evento insertado;
Atn.:	Característica de atenuación de el punto hasta el evento actual.
Cuml.:	Pérdidas acumuladas, calculadas desde el punto inicial hasta el evento actual.

ß

Ē ΞĻ ₽ ł Л: л‡ t

÷

AB

IIII

Event

25.308 km

0.85 dB 5.57 dB

4.4.2.3 Precisión

El marcador se utiliza para señalar y analizar un único evento, la sección de la traza y la distancia.

La distancia, atenuación, pérdidas en el marcador o entre marcadores se visualizará en la información de los marcadores, como aparece en la figura 10.

Figura 10.- Información del Marcador A/B.

Los siguientes parámetros se miden entre el marcador A y B. Cuando cambie a otro marcador, los registros cambiarán en consonancia.

- "A-B": Distancia entre dos marcadores;
- "2 puntos de pérdida": Pérdida entre dos marcadores; diferencia de potencia entre dos marcadores
- "2 puntos de atenuación": 2 puntos de pérdida de unidades de longitud.

Las operaciones especificadas anteriormente deben ser realizadas con posterioridad.

5. PROCESO DE MEDIDA DE TRAZAS

Trazas

5.1 Introducción a la Interficie Gráfica de Usuario (GUI)

Al encender el equipo, se visualiza en el LCD una pantalla de arranque como muestra la figura 11:

Figura 11.- Pantalla de arranque.

Tres segundos después del encendido aparece una pantalla de ayuda rápida, y la barra de menú principal en el lado derecho de la pantalla.

Figura 12.- Ayuda y menú principal.

5.1.1 Barra de menú del PROLITE-50/51/52

En la parte derecha de la pantalla LCD se encuentra verticalmente la barra de menú del **PROLITE-50/51/52** en forma de iconos. Pulsar () y () para desplazarse a lo largo del menú. Seleccionar la función pulsando ()

Nu.	Iconos	Significado
1	(Y)	Configuración de parámetros
2	þ	Guardar archivo
3	ሌ	Abrir arhivo
4	.III	Re-analisis de la traza.
5	↓	Aumentar traza horizontalmente.
6	+	Disminuir traza horizontalmente.
7		Aumentar traza verticalmente.
8	л∳	Disminuir traza verticalmente.
9	A∕B	Conmutación entre marcadores
10		Ir al evento anterior.
11	+	Ir al evento posterior.
12		Indicador de carga de la batería

5.1.2 Estado de carga de la batería

Cuando el equipo se enciende y es alimentado a través del adaptador AC, las baterías internas se recargan de forma automática. El significado de las señales es el siguiente:

Batería en carga.

Batería cargada.

Cuando el equipo se alimenta a través de las baterías internas recargables, el nivel de carga de la batería aparece indicado en la pantalla LCD.

	Batería descargada.
I	Carga baja.
	Carga media.
	Más de media carga.
	Carga completa.

5.2 Proceso de medida

Se puede obtener una traza completa para cada medida. El **PROLITE-50/51/52** puede recuperar una traza guardada previamente.

NOTA: Antes de cada medida, si el operador no está familiarizado con los riesgos, por favor siga las instrucciones de este manual por su seguridad personal. Asegúrese que la fibra óptica o el cable no se están utilizando y que no inciden fuentes de luz en el láser antes de medir con el PROLITE-50/51/52. De otro modo, podrían obtenerse medidas incorrectas o incluso un daño permanente al PROLITE-50/51/52.

Para realizar una medida correctamente, le recomendamos seguir los siguientes pasos:

- Limpieza previa de conectores y empalmes.
- Conexión de la fibra óptica a medir.
- Configuración de parámetros.
- Inicio de la medida (Auto / Manual).
- Análisis de la traza resultante.

PROMAX

Una configuración de parámetros correcta es necesaria para conseguir medidas precisas; en consecuencia, es necesario llevar a cabo la configuración antes de utilizar el equipo.

Utilizar [y] para seleccionar , configuración de parámetros, entonces pulsar [, ó pulsar [) para salir, como se muestra en la figura 13 y figura 14.

2961065521	
Range	Auto
PulseWidth	Auto
Avg . Time	30 s
Wavelength	1550 nm
Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre .	3.00 dB
End Thre	3.00 dB wavelength

Figura 13.- Configuración de parámetros.

Scat . Coef .	-52.1dB
NRefl . Thre .	0.20 dB
Refl . Thre .	-52 .00 dB
End Thre .	3.00 dB
Delete File Time (y-m-d) Auto Off Lang / ÓïÑÔ LCD Contrast	2005 -05 -27 10 :30 :20 Off English
Color Mode	Color 2
Load Default	
Help	
C : 1.4000	wavelength : 1550 nm

Figura 14.- Configuración de parámetros.

Parámetros	Definición de parámetros
Escala	Longitud de la fibra óptica relevante para la traza
Anchura de Pulso	Anchura del pulso láser que transmite el OTDR a la fibra óptica
Tiempo medio	Tiempo para una única medida desde el inicio hasta el final
Longitud de onda	Seleccionar la longitud de onda del láser para la medida
Modo de medida	Seleccionar el modo de medida
VFL	Encendido y apagado láser visible (solo PROLITE-52).
Unidades de longitud	Para seleccionar las unidades de longitud.
IOR	IOR de la fibra óptica que afecta a la velocidad de transmisión del láser
Coeficiente de dispersión	Afecta a la potencia dispersada hacia atrás del láser en la fibra
Umbral de no reflexión	Fenómenos cuya pérdida de inserción es mayor que el umbral mostrado aquí
Umbral de reflexión	Fenómenos de reflexión GE el umbral será visualizado
Umbral final	El primer evento con pérdida de inserción GE el umbral se considera en el final de la fibra, y todos los eventos siguientes serán ignorados.
Borrar archivos	Borrar los datos de la traza almacenada en el equipo
Hora	Mostrar la hora actual del sistema
Auto apagado	Activación o desactivación de la función de apagado automático
Idioma	Elección del idioma
Contraste del LCD	Ajuste del contraste del LCD
Configuración del modo de color	Permite elegir entre 4 combinaciones de color diferentes
Configuración por defecto	Configurar todos los parámetros a los valores de fábrica
Ayuda	Mostrar los archivos de ayuda (Guía de referencia rápida)

En esta pantalla se muestran los siguientes parámetros configurables:

Configuración de la longitud de la fibra (Range) •

Generalmente, el valor se establece de acuerdo con la longitud actual de la fibra óptica, de forma que se asegure la precisión de la medida.

Bajo el menú de configuración de los parámetros, utilizar [4] y [1] para seleccionar "Range" (Escala); Pulsar [1997] para entrar.

Utilizar [Y] y para seleccionar la longitud adecuada; Pulsar [para confirmar, o pulsar [) para salir, como se muestra en la figura 15.

Range	Auto	
PulseWidth Avg .Time Wavelength Meas .Mode VFL Length Units IOR Scat .Coef . Nrefl .Thre .	300 m 1.3 km 2.5 km 5 km 10 km 20 km 40 km 160 km 240 km	

NOTA: Existen 9 niveles de escalas predefinidas: Auto, 300 m, 1.3 Km, 2.5 Km, 5 Km, 10 Km, 20 Km, 40 Km, 80 Km, 160 Km y 240 Km. «Auto» significa medida automática. Cuando esta función está seleccionada, el equipo realizará automáticamente una selección inteligente de la escala adecuada y de la anchura de pulso para la medida. El proceso completo de medida no requiere ninguna intervención del operador. «Auto» significa la configuración por defecto.

• Configuración de la Anchura de Pulso (Pulse Width)

La selección de la anchura del pulso afecta al margen dinámico y a la resolución de la traza medida. Con una anchura de pulso estrecha, habrá mayor resolución y menor zona muerta, sin embargo el margen dinámico disminuirá. Por el contrario, una anchura de pulso grande puede aportar mayor margen dinámico y medidas comparativamente a mayor distancia, pero afectando a la resolución y zona muerta. Por tanto, el usuario deberá escoger entre margen dinámico y zona muerta.

Los posibles valores de anchura de pulso, dependen de la longitud de la fibra seleccionada en el parámetro anterior.

En el menú de configuración de parámetros, utilizar (🎽 y 🛃 para seleccionar

"Pulse Width" (anchura de pulso): Pulsar [200] para seleccionar como muestra la figura 16. Pulsar [200] para salir.

Página 22

Range	30 ns	
PulseWidth	100 ==	
Avg . Time	100 ns	
Wavelength	1.0	
Meas . Mode	1.0us	
VFL	2.5us	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	-52.1dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	-52.00 dB	
End Thre .	3.00 dB	
: 1.4000	wavelength : 1	550 nm

Figura 17.- Configuración de Tiempo Medio.

NOTA: Existen cinco anchuras de pulso predefinidas: 30 ns, 100 ns, 300 ns, 1,0 μs y 2,5 $\mu s.$

• Configuración del Tiempo Promedio (Average Time)

El tiempo promedio afecta directamente al SNR. Cuanto mayor es el tiempo promedio, mayor es el SNR, así como el margen dinámico. Por tanto, en caso de medidas de fibras ópticas de larga distancia, deberá seleccionarse un tiempo promedio largo para poder revisar los fenómenos que se producen a larga distancia del extremo.

En la configuración de parámetros,	utilizar [) y [🔽]	para	seleccionar
"Average Time" (Tiempo promedio); pulsar	[^{Enter}] para	confirmar,	como	muestra la
figura 18. Pulsar [🌇] para salir.				

Range PulseWidth	15 s
Avg . Time	30 s
Wavelength	1 min ■
Meas . Mode	2 min
VFL	3 min
Length Units	1+
IOR	1.4666
Scat . Coef .	- 52 . 1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	- 52.00 dB
End Thre .	3.00 dB

Figura 18.- Configuración Tiempo promedio (Average Time).

- NOTA: Existen 5 niveles de tiempos de promedio predefinidos: 15 s, 30 s, 1 min, 2 min y 3 min. La configuración por defecto es 30 s.
 - Configuración de la "Longitud de Onda" (Wavelength). .

El PROLITE-50/51/52 trabaja con diferentes longitudes de onda (ver especificaciones).

En la configuración de parámetros, utilizar [2 para seleccionar

"wavelength" (Longitud de onda); pulsar [er] para cambiar la longitud de onda, como se muestra en la figura 19.

	Range	Auto			18
	PulseWidth	Auto			
6	Avg . Time	1310 nm			15
	Wavelength	1550 nm			1
	Meas . Mode	Averaging		_	
	VFL	Off			Л
	Length Units	Meter [m]			1:
	IOR	1.4666			
	Scat . Coef .	-52.1dB			
8	Nrefl . Thre .	0.20 dB			15
A	Refl . Thre .	-52.00 dB			
R	End Thre .	3.00 dB			7
10	K : 1.4000	wavelength	:	1550 nm	L ull

Figura 19.- Configuración de la Longitud de Onda (Wavelenght).

Configuración del Modo de Medida (Measuring Mode)

Existen dos tipos de modos de medida: Promediado (Averaging) y Tiempo Real (Real Time). En el modo de tiempo real, el **PROLITE-50/51/52** registra medidas en tiempo real a través del conector para la fibra exterior y restaura la traza medida.

Cuando trabaja en el modo de tiempo real, pulsar la tecla [**PROLITE-50/51/52**] para detenerlo, en caso contrario seguirá tomando medidas. En el modo Promediado, el **PROLITE-50/51/52** promedia los datos registrados durante el tiempo de medida que establece el usuario. Cuando excede del tiempo establecido, para automáticamente y muestra el resultado. Generalmente, se sugiere el Modo Promediado.

En el menu de configuración de parámetros, utilizar [] y [] para seleccionar "Measuring Mode" (Modo de Medida); Pulsar [] para seleccionar el modo Promediado o el modo Tiempo Real, como muestra la figura 20. Pulsar [] para salir.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	-52.1dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	-52.00 dB	
End Thre .	3.00 dB	

Figura 20.- Configuración del Modo de Medida (Measuring Mode).

• VFL-Localizador Visual de Fallos (For PROLITE-52)

En la configuración de parámetros, utilizar [y [y] para seleccionar "VFL", según la demanda de diferentes, pulse [para seleccionar CW, 1Hz o apagado, Pulse [para salir VFL. Cuando está activado, se mostrará el icono, que está en la barra de menú de la derecha. como en la figura 21.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	CW	
Length Units IOR	Meter [m] 1.4666	
Scat . Coef .	- 52 . 1 dB	
Nrefl . Thre .	0.20 dB	1
Refl . Thre .	- 52.00 dB	
End Thre .	3.00 dB	- 1

Figura 21.- VFL Configuration.

• Configuración de las unidades de longitud.

En la configuración de parámetros, utilizar [] y [] para seleccionar "Length Units", pulse [] para seleccionar las unidades de medida deseada, como en la Figura 22. Pulse [] para salir.

Range	Auto		
PulseWidth	Auto	_	1
Avg . Time Wavelength	Meter[m]		
Meas . Mode	Feet[ft]		-
VFL	Miles[mi]		<u>n</u>
Length Units	wieter [m]	- 1	1
IOR	1.4666		
Scat . Coef .	-52.1dB		
8 Nrefl . Thre .	0.20 dB		15
A Refl . Thre .	-52.00 dB		
R End Thre .	3.00 dB		×
IUK : 1.4000	wavelength	: 1550 nm	100

Figura 22.- Length Units Configuration.

Configuración del índice de refracción (IOR)

El **IOR** (Índice de Refracción) es un factor clave que afecta a la velocidad de la transmisión láser en una fibra óptica; y en este caso, la configuración del **IOR** tiene un impacto directo en la precisión de las medidas. Generalmente el valor del parámetro **IOR** lo facilita el fabricante de la fibra óptica, y puede configurarse con la precisión de cuatro dígitos después del punto decimal entre 1,0 - 2,0.

Configuración del Coeficiente de Dispersión (Scattering Coefficient).

El coeficiente de dispersión determina el valor de la potencia dispersada de retorno. La configuración afecta al cálculo del valor de reflexión.

En la configuración de parámetros, utilice [] y [] para seleccionar "Scattering Coefficient" (Coeficiente de Dispersión); pulsar [] para acceder, como se muestra en la figura 24. Pulsar [] para salir.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	- 5 2.1 dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	-52.00 dB	
End Thre .	3.00 dB	

Figura 24.- Configuración del Coeficiente de Dispersión

Utilizar [

• Configuración del umbral de no reflexión. (Non Reflection Threshold)

Esta configuración tiene un impacto directo sobre la lista de eventos de pérdidas de inserción. Sólo para los eventos GE este umbral será listado.

En la configuración de parámetros, utilizar [] y [] para seleccionar "Non Reflection Threshold" (Umbral de no reflexión); pulsar [] para entrar, como muestra la figura 25. Pulsar [] para salir.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	- 52 . 1 dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	- 52.00 dB	
End Thre .	3.00 dB	
: 1.4000	wavelength : 1550 1	nm

Figura 25.- Configuración del umbral de no reflexión (Non Reflection Threshold)

h

Utilizar 📕 y 🗭 para ajustar la posición de los campos resaltados; utilice 🕺 y 💜 para cambiar los dígitos. Después de configurarlos, pulsar Enter para confirmar.

NOTA: El valor por defecto es 0,20 dB.

Configuración del Umbral de Reflexión (Reflection Threshold)

Esta configuración tiene un impacto directo sobre la lista de eventos de reflexión. Sólo con los eventos de reflexión GE este umbral se mostrará en la lista de eventos.

En la configuración de parámetros, utilizar [A] y Para seleccionar "Reflection Threshold" (umbral de reflexión); pulsar Para entrar, como se muestra en la figura 26. Pulsar Para salir.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	-52.1dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	- 52 .00 dB	
End Thre .	3.00 dB	

Figura 26.- Configuración del Umbral de Reflexión (Reflection Threshold).

Utilizar [

NOTA: El valor por defecto es -52.00 dB.

Configuración del umbral de finalización (End Threshold).

Este umbral es el umbral final de la fibra óptica. Si el umbral final es de 3.0 dB, entonces el primer evento con pérdida de inserción GE de 3 dB deberá ser considerado como el final de la fibra óptica. Si el valor se fija a 0 dB, habrá umbral final.

En la configuración de parámetros, utilizar [2017] y [2017] para seleccionar "End threshold"(Umbral final); pulsar [2017] para entrar, como se muestra en la figura 27.Pulsar [2017] para salir.

A 30.554	
Range	Auto
PulseWidth	Auto
Avg . Time	30 s
Wavelength	1550 nm
Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre .	0 β.00 dB
: 1.4000	wavelength : 1550 nm

Figura 27.- Fin de la configuración del umbral.

Utilizar 🛃 y 🛃 para ajustar la posición del campo resaltado; utilizar 🎑 y J para cambiar los dígitos. **NOTA**: El valor por defecto es 3.00 dB.

Borrar Archivo (Delete File)

Esta función se ha diseñado para borrar las trazas guardadas.

En la configuración de parámetros, utilizar [A] y [V] para seleccionar el campo "**Delete File**" (Borrar archivo); pulsar [A] para entrar, como muestra la figura 28. Pulsar [V] para salir.

Figura 28.- Borrar Archivo (Delete File).

Pulsar [] y [] para seleccionar los archivos a borrar, entonces pulsar [para confirmar. Los usuarios pueden borrar uno a más de un archivo a la vez. Pulsar 💶 y ▶ para seleccionar [Borrar]. Pulsar 🛄 según la orden a procesar, ſ seleccionar "Yes" para borrar; seleccionar "No" para no borrar. Si elige [Cancel], saldrá del menú de borrado de archivos.

Configuración de fecha y hora

La configuración del reloj se utiliza para cambiar la fecha y la hora del sistema.

En la configuración de parámetros, utilizar [] y [] para seleccionar "Time"

(Reloj); pulsar [ET] para cambiar, como muestra la figura 29. Pulsar [ET] para salir.

Avg . Time	30 s
Wavelength	1550 nm
Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre .	3.00 dB
Delete File	
Time (y-m-d)	20 05 - 05 - 27 10 : 30 : 20
1 1 1666	Wavelength : LONU nm

Figura 29.- Configuración de la hora.

Utilizar [, y , para ajustar la posición del campo resaltado; utilizar [, y , para cambiar los dígitos. Después de configurarlo, pulsar , para confirmar.

Configuración del apagado automático (Auto Off).

Esta función se ha diseñado para el ahorro de la carga de la batería. Si la autodesconexión está activada, el equipo se autodesconectará a los 5 minutos de no utilización.

En la configuración de parámetros, utilizar [20] and [20] para seleccionar "Auto off"; pulsar [20] para conmutar, como se muestra en la figura 30. Pulsar [20] para salir.

ANTONIS I	1 I I I I I	1
Wavelength	1550nm	
Meas. Mode	Averaging	
VFL	Off	
Length Units	Meter[m]	
IOR	1.4666	
Scat.Coef.	-52.1dB	
Nrefl. Thre.	0.20dB	
Refl.Thre.	-52.00dB	ľ
End Thre.	3.00dB	
Delete File	_	
T i m e (y - m - d)	2005-05-27 10:30:20	
Auto Off	Off	
K : 1.4000	wavelength: 1550nm	1

Figura 30.- Configuración del borrado automático.

NOTA: La configuración por defecto es «auto off» activado.

Configuración del Idioma

En la configuración de parámetros, utilizar [, y [, par seleccionar "Language"; pulsar [, para conmutar, como se muestra en la figura 31. Pulsar [, para salir.

Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	- 52 . 1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	- 52 . 00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Off
Lang.	English
: 1.4666	Wavelength : 1550 nm

Figura 31.- Configuración del Idioma.

Ajuste del contraste de la pantalla LCD (LCD Contrast)

Los usuarios pueden ajustar el contraste de acuerdo con sus preferencias visuales.

En la configuración de parámetros, utilizar [1] y [1] para seleccionar "Contraste LCD"; pulsar [1] para ajustar, como se muestra en las Figura 32. Pulsar

VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Low High
Lang ./ ÓïÑÔ	
LCD Contrast	

Figura 32.-. Ajuste del contraste de la pantalla LCD (LCD Contrast).

Configuración del modo de color (Color Mode).

PROMA)

Esta configuración permite elegir entre cuatro combinaciones de colores diferentes. Usar [y y y para seleccionar "**Modo de color**", pulsar [para elegir entre las diferentes combinaciones de color. Pulsar [para salir.

Figura 33.-. Configuración del modo de color.

Usar [] y [] para seleccionar la combinación deseada, pulsar [] para confirmar la selección.

Recuperación de los valores por defecto (Load Default)

A30554	
IOR	1.4666
Scat . Coef .	- 52 . 1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	- 52 .00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Off
Lang ./ ÓïÑÔ	English
LCD Contrast	5
Color Mode	No
Load Default	Yes
K : 1.4000	wavelength : 1550 nm

Figura 34.- Carga de valores por defecto.

Ayuda (Help)

El usuario puede obtener una referencia rápida a través del menú [Help].

En la configuración de parámetros, Utilizar [y] para seleccionar "Help" (Ayuda); Pulsar [r] para entrar, como se muestra en la figura 35, 36 y 37. Pulsar

Scat . Coef .	-52.1dB
NRefl . Thre . Refl . Thre	0.20 dB -52.00 dB
End Thre .	3.00 dB
Delete File Time (y - m - d) Auto Off Lang / ÓïÑÔ LCD Contrast Color Mode Load Default	2005 -05 -27 10 :30 :20 Off English Color 2
Help	
K : 1.4000	wavelength : 1550 nm

Figura 35.- Ayuda.

Figura 36.- Ayuda.

Figura 37.- Ayuda.

5.2.2 Medida de la traza - Auto

La medida automática puede ser aplicada en el caso que la longitud de la fibra óptica no sea identificable. El **PROLITE-50/51/52** selecciona automáticamente la escala de medida.

Pasos para la medida automática:

- Configuración de los parámetros: para más detalles sobre las operaciones, consulte el apartado *Configuración de Parámetros* Establezca la escala en "AUTO".
- Medida: pulsar [2007] para inciar la medida, con la interfaz como se muestra en las figuras 38 y 39.

Figura 38.- Medida.

Figura 39.- Medida.

Mientras se realiza la medida, aparece la siguiente información en pantalla.

"Total: 00:30"	El tiempo de 30 segu	de medid Indos.	a establ	ecido por el i	Jsuaric) es
"Passed: 00:16"	El tiempo segundos.	total de	medida	transcurrido	es de	16
₩						

" *** "..... El parpadeo de este símbolo significa que el láser está activo.

"15:20" La hora actual es 15:20.

NOTA:	Mientras el proceso	de medida	se está	realizando,	todas	las teclas	estan
	inhabilitadas excepto	0n/Off], [[*]	^{n/Stop}] y[hift /x			

 Después de un cierto periodo de tiempo, la traza se visualiza sobre la GUI. La traza en la figura inferior es la traza durante la medida, que será refrescada al cabo de un cierto periodo de tiempo con el fin de mostrar al usuario el proceso completo en tiempo real. Pero al final de la medida la traza visualizada será la final como muestra la figura 40.

Figura 38.- Medida de la traza del PROLITE-50/51/52.

5.2.3 Medida de trazas - Manual

Si el usuario tiene un gran conocimiento de las fibras ópticas medidas, puede introducir directamente los parámetros precisos y obtener unas medidas óptimas.

- Configurar los parámetros: Consultar el apartado configuración de parámetros.
- Medida: Pulsar [1000] para iniciar la medida. El proceso es el mismo que con la medida Automática.

5.2.4 Medida de trazas – Motivos de errores en las medi das

Si se produce un error en la medida, puede ser debida a uno de los siguientes motivos:

- Los eventos pueden estar muy próximos el uno del otro.
 Acortar la anchura del pulso y probar de nuevo. Si todavía se producen fallos, por favor intente medir sobre el otro extremo de la fibra óptica.
- SNR bajo Probar utilizando una anchura de pulso mayor o incrementando el tiempo de promedio, y realizar otra prueba.
- Configuración de parámetros incorrecta.
 Comprobar la configuración de parámetros y realizar otra prueba.

5.3 Ventana de información.

Ítems de la ventana de información: parámetros de medida, parámetros de análisis e información relativa al marcador A/B.

Para más detalles en relación a la ventana de información, consultar el apartado 4.4.2 de la ventana de información del **PROLITE-50/51/52**.

5.3.1 Conmutar entre los ítem de la ventana de información.

En la GUI de la figura 5, pulsar [\checkmark] y los ítems de la ventana de información se visualizarán por este orden: parámetros de medida \rightarrow información de análisis \rightarrow Lista de eventos \rightarrow información del marcador A/B \rightarrow parámetros de medida.

5.3.2 Repaso de la Lista de Eventos

En la GUI de la figura 5, pulsar [10], los ítems de la ventana de información conmutarán a la información de la lista de eventos

5.3.3 Cursores

El **PROLITE-50/51/52** dispone de dos cursores (A y B) que pueden ser desplazados a lo largo de la traza proporcionando información específica en ese punto. Para conmutar el cursor activo utilizar $\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ y $\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ para seleccionar el icono $\overset{A}{B}$, después pulsar [Enter] para conmutar entre el marcador A/B.

Utilizar 📕 y 🏓 para desplazar el marcador A ó B.

Pulsar [

Pulsar [] ó [] para cambiar la posición del marcador A ó B, y la información del marcador A/B cambiará de acuerdo con la ventana de información.

5.4 Aumento y disminución de la visualización de la traza

Para poder visualizar los eventos con mayor precisión, el equipo incorpora las funciones de aumento y disminución de visualización de la traza.

La función indicada con el icono [→] en el menú, sirve para aumentar la

traza horizontalmente, mientras que el icono [\rightarrow] sirve para disminuirla.

La función indicada con el icono [] en el menú sirve para aumentar la traza verticalmente mientras que el icono [] isirve para disminuirla.

Utilizar [] y [] para seleccionar la función deseada y pulsar (ENTER)

La visualización de la traza puede ser aumentada hasta 10 veces. En el caso del aumento horizontal, se centrará en pantalla la zona de traza del cursor que esté activa.

Usar [4] y [1] para mover los cursores por la traza con mayor precisión.

La función de conmutación del cursor (A/B) y de desplazamiento entre eventos [1] y [1] no modifica la visualización de la traza y centra automáticamente en la pantalla el cursor o evento seleccionado con estas funciones. Las funciones de aumento / disminución, también pueden ser ejecutadas mediante una combinación de teclas de modo de acceso rápido.

- Para disminuir la traza horizontalmente mantener pulsado [
 seguidamente [
 requidamente [
 requidamente [
 requidamente [
 requidamente [
 requidamente [
 requised by the sequidamente [
- Para disminuir la traza verticalmente mantener pulsado [seguidamente [

5.5 Guardar traza

Cuando la medida esté finalizada la traza resultante puede ser guardada. Los contenidos de la traza registrada incluyen: Curva de la traza, información relativa a la traza.

• En la GUI de la figura 41, utilizar [] y [] para seleccionar], y pulsar [Enter] para entrar, como se muestra en la figura 41.

Figura 41.- Guardar traza.

 Introducir el nombre de archivo: utilizar [⁴], [⁴], [⁴] y [^b] para escoger cada carácter alfanumérico uno a uno, y pulsar [Enter] para confirmar. La longitud del nombre de archivo no debe exceder de 8 caracteres alfanuméricos.

- Guardar el archivo: utilizar [, ,], [,], g b para seleccionar "OK", pulsar [Enter] para guardar.
- Cancelar la operación de guardar: utilizar [[▲]], [[▲]], [⁴] y [[▶]] para seleccionar "cancel", pulsar [Enter] para cancelar la operación de "guardar archivo".
- Borrar los caracteres alfanuméricos: utilizar [4], [4], [4] y [1] para seleccionar "Delete", pulsar [Enter] para borrar los caracteres alfanuméricos.
- Espacio de memoria: 118/300 significa un espacio total de memoria de 300 archivos; ya ha guardado 118 archivos en memoria.

5.6 Visualización de trazas guardadas

Aparecerá una pantalla mostrando todas las trazas guardadas, utilizar [▲] y

- Utilizar [] y [] para seleccionar una traza en particular, en la parte derecha de la pantalla aparece información general de la traza seleccionada. Utilizar [] y [] para seleccionar [Open] o [Cancel]. Pulsar [Enter] para confirmar.
- Espacio de la memoria: 118/300 significa que el espacio total de memoria es de 300 archivos; y ya tiene guardados 118 archivos en total.

5.7 Descarga de las trazas guardadas al PC

Las trazas guardadas pueden ser descargadas en el PC mediante el software asociado del gestor de trazas, que permite procesarlas en el PC posteriormente.

- Instalar el software y ejecutarlo.
- Apagar el PROLITE-50/51/52.
- Conectar el PROLITE-50/51/52 al PC a través del cable de la interfaz RS232 o USB.
- Encender el **PROLITE-50/51/52**, y cargar los datos mediante el software. El proceso completo se muestra en la figura 43.

Figura 43.- Carga de las trazas guardadas

NOTA: Asegúrese que el instrumento está apagado al conectarlo al PC a través del cable de datos del puerto RS232 (o USB). Compruebe que el cable está bien sujeto, entonces encienda el aparato.

6. MANTENIMIENTO

6.1 Mantenimiento de las baterías

La batería de este equipo es una batería NiMH recargable. Las baterías NiMH han sido cuidadosamente instaladas y verificadas. Por favor no abra el aparato para manipular las baterías sin motivo justificado.

• Precauciones durante la operación del equipo:

El siguiente procedimiento puede conducir a la desconexión automática del equipo:

- El equipo pasa a autodesconexión cuando detecta una alimentación insuficiente durante su funcionamiento y aparece el indicador de alimentación baja en la pantalla LCD.
- Si no es utilizado durante un largo periodo de tiempo y presenta una carga insuficiente, el equipo se desconectará automáticamente unos segundos después de su puesta en marcha con el objeto de proteger a las baterías de una descarga excesiva. Las baterías internas deben ser recargadas inmediatamente mediante el adaptador de corriente.

NOTA: Notas para el mantenimiento de las baterías del instrumento:

A fin que el **PROLITE-50/51/52** cumpla las especificaciones (incluyendo las baterías) la temperatura de almacenamiento debe estar entre 0 °C y 40 °C. Los equipos deben almacenarse en condiciones de baja humedad.

El equipo incorpora una batería recargable NiMH interna. No sustituya la batería por sí mismo.

Si se prevee no utilizar el equipo durante un largo periodo de tiempo (durante más de dos meses), se aconseja recargarla cada mes.

• Procedimiento para reemplazar la pila del reloj.

- Retirar la tapa de la bateria situada en el panel posterior del equipo.
- Retire la bateria NIMH del equipo
- Bajo la bateria se encuentra la pila de apoyo para el reloj interno. Sustitúyala si fuese necesario que debe ser del tipo

Pila de botón 3V Li CR1220.

Conecte y coloque nuevamente la batería NiMH.

6.2 Limpieza de las interfaces

Los conectores ópticos deben mantenerse limpias. Debe utilizarse un alcohol especial para limpiar la salida óptica. Colocar siempre los tapones de protección contra el polvo cuando se prevea que el equipo no va ha ser utilizado durante un largo periodo de tiempo, manteniéndolos limpios.

Adicionalmente, los extremos deben limpiarse periódicamente.

Efectos de la limpieza de las interfaces y conectores

El diámetro del núcleo de la fibra óptica es de 9 um, y el diámetro de las partículas de polvo oscila entre 1/100 a 1/1/10 um. Es decir, comparativamente el tamaño de las partículas de polvo pueden cubrir parte del extremo óptico y en consecuencia degradar el rendimiento del instrumento.

Además, la densidad de potencia puede quemar las partículas de polvo en la fibra óptica y provocar mayores daños (por ejemplo, 0 dBm de potencia óptica pueden producir unos 16000000 W/m*m de densidad de potencia en una fibra monomodo). En este caso, la medidas serán imprecisas e irreversibles.

Instrucciones de seguridad para seguir antes de proceder a limpiar

- a) Asegúrese que el instrumento está desconectado de la alimentación y apagado cuando proceda a su limpieza.
- b) Cualquier operación contraria a las instrucciones descritas puede resultar peligrosa y provocar lesiones por exposición al láser.
- c) Asegúrese que la fuente de luz láser está desconectada siempre que limpie cualquier conector óptico.
- d) Cuando el equipo se encuentra en funcionamiento, por favor evite mirar directamente a la salida óptica. Aunque la radiación láser sea invisible puede provocar graves lesiones a la vista.
- e) Tome precauciones frente al choque eléctrico y asegúrese que la alimentación AC se encuentra desconectada del aparato antes de su limpieza. Siempre utilice un paño seco o ligeramente humedecido para limpiar el chasis del instrumento y nunca limpie en el interior.
- f) Por favor no añada ningún accesorio al instrumento óptico o calibre por si mismo el equipo.
- g) Para su mantenimiento, diríjase siempre a profesionales cualificados.

Herramientas para la limpieza de interfaces y conectores

- a) Limpiador para fibra óptica (para limpieza de conectores ópticos).
- b) Bastoncillo limpiador para fibra óptica (para limpieza de las salidas ópticas).
- c) Tisú para la limpieza de fibras ópticas (para la limpieza de interfaces ópticos)
- d) Alcohol isopropílico.
- e) Bola de algodón.
- f) Papel tisú.
- g) Cepillo de limpieza.
- h) Aire comprimido.

Procedimiento recomendado para la limpieza de interfaces y conectores

Como muestra la figura 5.10. El procedimiento recomendado es el siguiente:

- a) Desenroscar el conector.
- b) Pellizque la base cerámica con el dedo pulgar e índice, rótelo mientras tira de él hacia fuera lentamente.
- c) Limpiar la cabeza del láser cuidosamente.
- d) Montar la base cerámica.
- e) Roscar el conetor.

Figura 45.- Estructura de la salida óptica.

6.3 Requerimientos de calibración

Se recomienda calibrar el instrumento cada dos años. Por favor, contacte con los distribuidores más próximos para una calibración correcta.

6.4 Recomendaciones de limpieza

PRECAUCIÓN

Para limpiar la caja, asegurarse de que el dispositivo está desconectado.

PRECAUCIÓN

No se use para la limpieza del panel frontal y en particular de los visores, alcohol o sus derivados, estos productos pueden atacar las propiedades mecánicas de los materiales y disminuir su tiempo de vida útil.

La caja se limpiará con una ligera solución de detergente con agua y aplicada mediante un paño suave humedecido.

Secar completamente antes de volver a usar el equipo.

TABLE OF CONTENTS

1 GENERAL	1
1.1 Specifications	3
2 SAFETY BUILES	5
2.1 General	5
2.2 Specific precautions	0
2.3 Descriptive Examples of Over-Voltage Categories	6
3.1 Patch panel	7
3.2 Keynad Functions	, 8
A DASIC INFORMATION OF PROLITE 50/51/52	
4. DASIC INFORMATION OF PROLITE-50/51/52	11
4.1 Finiciple of Fiolice-50/51/52	11
4.2 Dasic definition and classification of events	11
4211 Reflection Events	12
4212 Non-reflection Events	12
4.2.1.3 Inspection Event	13
4.3 Measurement Application of PBOLITE-50/51/52	13
4.3.1 Measurement Contents of PROLITE-50/51/52	13
4.3.2 Trace Analysis of PROLITE-50/51/52	13
4.4 Trace Display Screen of PROLITE-50/51/52	14
4.4.1 Trace Display of PROLITE-50/51/52	14
4.4.2 Information Window of PROLITE-50/51/52	15
4.4.2.1 Measurement Trace Parameters	15
4.4.2.2 Event List	16
4.4.2.3 Accuracy	17
5. TRACE MEASUREMENT PROCESS	19
5.1 Instructions on Graphic User Interface (GUI)	19
5.1.1 Menu Bar of PROLITE-50/51/52	20
5.1.2 Battery Recharge Status	20
5.2 Trace Measurement of PROLITE-50/51/52	21
5.2.1 Parameter Configuration on PROLITE-50/51/52 on Menu Bar	22
5.2.2 Trace Measurement - Auto	38
5.2.3 Trace Measurement - Manual	40
5.2.4 Trace Measurement – Reasons of Measurement Failures	40
5.3 Information Window	41
5.3.1 Switch between Information Window Items	41
5.3.2 Review Event List	41
5.3.3 Cursors	41
5.4 Increasing and decreasing of the trace visualization	42
5.5 Save Frace	42
5.0 DIUWSE Saved Traces	43 15
5.7 Upidau Saved Traces	40

6. MA	AINTENANCE	47
6.1	Maintenance of Batteries	47
6.2	Cleaning of Interfaces	49
6.3	Calibration Requeriments	51
6.4	Cleaning Recommendations	51

OPTICAL REFLECTOMETER (OTDR) PROLITE-50/51/52

1. GENERAL

PROLITE-50/51/52 are the preferred choice for the measurement of optical fiber's specifications. With **PROLITE-50/51/52**, you can make assessment of one single optical fiber or a whole optical fibre chain. Especially, you can directly observe loss and events distribution of optical fibre chain.

PROLITE-50/51/52 check the transmission quality of optic fibre through measurement of backward scattered lights. Standard organizations like International Telecom Union (ITU) define backward scattered lights as effective analysis means of measurement of optical fibre loss. Backward scattering is also the only effective way of connector inspection, which can be applied to measure the length of optical fibre, too. Therefore, **PROLITE-50/51/52** is a useful tool for optical fibre manufacturing, installation and maintenance.

Therefore, the **PROLITE-50/51/52** is a very useful tool for the optical fibre manufacturing, installation and maintenance.

PROLITE-50/51/52 works through reviewing "events" in optical fibre (for example, irregularities and connectors), which is quite helpful for quality control for those who are in charge of optical fibre manufacturing, installation and maintenance. **PROLITE-50/51/52** can help identify the irregularities in optical fibre, locate them, and measure their attenuation, relevant loss and their homogeneity.

PROLITE-50/51/52 is more helpful for field operation. It can help to check the qualification of optical fibre chain circuit on a regular basis. For the purpose of future maintenance, transmission quality and condition of optical fibre need to be recorded and stored, which includes measurement of optical path, total loss, and loss of all tie-ins and connectors.

Besides, **PROLITE-50/51/52** are easy to use, small and compact. According to the ergonomics, they are designed to fully embody the user's convenience with its large LCD display and graphical interface. They can save and transfer the measurement curves data to a PC by the provided software for further analysing, reporting and printing.

PROLITE-50/51/52 feature by:

- Basic applications:
 - a) Measure the length of optical fibre and cable.
 - b) Measure the distance between two points on optical fibre and cable.
 - c) Locate faults and ruptures of optical fibre and cable.
 - d) Display distribution curve of optical fibre and cable loss.
 - e) Measure attenuation coefficient of optical fibre and cable.
 - f) Measure loss between two points on optical fibre and cable.
 - g) Measure loss of tie-ins.
 - h) Measure reflection of reflection events of optical fibre and cable.

For a specific event (transmission quality changed due to faults caused by welding, connector, bending etc.), the following measurements can be carried out with **PROLITE-50/51/52**:

- a) For each event: distance, loss and reflection;
- b) For each section of optical fibre: length and loss of dB or dB/Km;
- c) For the whole optical fibre chain: length and loss of dB;
- Large Colorful LCD display with auto or manual adjustment of contrast.
- Backlight LCD display supports night operation.
- Easy operation with trace graphic display.
- Trace storage function.
- RS232/USB Data upload port.
- PC analysis software-Trace Manager for analysing and reporting previously stored data.
- Auto off function conserving battery life.
- DC/AC power supply.
- Auto recharging, over 8 hours operation for one charge.

1.1 Specifications

Wavelength (nm)	PROLITE-50	1310/1550 nm.	
	PROLITE-51	1310/1550/1625 nm.	
	PROLITE-52	1625 nm.	
Dynamic Range (dB) ¹	PROLITE-50	24 dB.	
	PROLITE-51	38/37/37 dB.	
	PROLITE-52	37 dB.	
Event Dead Zone	PROLITE-50	10 m.	
	PROLITE-51	1,5 m.	
	PROLITE-52	1,5 m.	
Attenuation Dead Zone ²	PROLITE-50	25 m.	
	PROLITE-51	10 m.	
	PROLITE-52	10 m.	
Connector Type	FC / PC (Intercha	ingeable SC, ST).	
Fibre Type	Single mode.		
Pulse Widths	5 nS / 10 nS / 12	nS / 30 nS / 100 nS / 275 nS / 300 nS/	
	1 µS / 2,5 µS / 10	μS / 20 μS.	
Selectable Ranges	0,3 / 1,3 / 2,5 / 5 /	/ 10 / 20 / 40 / 80 / 120 / 160 / 240 km.	
Distance Measure			
Accuracy	\pm (1 m + 5 x 10-5x Distance + reference space).		
Reflection Measure			
Accuracy	± 4 dB.		
Attenuation Measure			
Accuracy	± 0,05 dB / dB.		
Memory Capacity	PROLITE-50	300 curves of test.	
	PROLITE-51	1000 curves of test.	
	PROLITE-52	1000 curves of test.	
Visible Fault Locator (VLS)			
Output Power	PROLITE-52	≥ -3 dBm.	
Max Measurement			
Range	PROLITE-52	5 Km.	
Connectivity	RS-232 / USB.		
Internal Power	Rechargeable Battery NI MH.		
Power Supply	External 13,8 V DC 1,2 A.		
Battery Life	8 hours continuo	us operation; 20 hours stanby (on one	
	charge.		
OPERATING ENVIRONMEN	TAL CONDITION	S	
Altitude	Up to 2000 m.	-	
Temperature range	From 5 to 40 °C	(Automatic disconnection by excess of	
	temperature).		

 $^{^1\,}$ The dynamic range is measured at maximum pulse width within average time of 3 minutes.

² As conditions for the Blind: The reflection phenomena occur within a distance of 4 km, the reflected intensity is less than - 35 dB, and the blind zone is measured on the minimum pulse width.

Max. relative hu	midity	80 % (up to 31°C), decreasing lineally up to 40 °C.	50% at			
MECHANICAL F Dimensions Weight	EATURES	220 (H) x 110 (W) x 70 (T) mm. 1 kgs.				
ACCESORIES						
AL005	Power Supply AC 100V/240V 50/60 Hz.					
	Carrying Ba	ag.				
0 MI1858	User's Manual.					
	Communica	ation software CD.				
	Communica	ation with PC Cable.				
AD500	Adapter ST (Optional).					
AD502	Adapter SC	; (optional).				

RECOMMENDATIONS ABOUT THE PACKING

It is recommended to keep all the packing material in order to return the equipment, if necessary, to the Technical Service.

2. SAFETY RULES

2.1 General

- * The safety could not be assured if the instructions for use are not closely followed.
- * This is a **class I** equipment, for safety reasons plug it to a supply line with the corresponding **ground terminal**.
- * When using some of the following accessories **use only the specified ones** to ensure safety.

Mains power supply **AL-005**. Watch Battery.

- * Observe all **specified rating** both of supply and measurement.
- * Remember that voltages higher than 70 V DC or 33 V AC rms are dangerous.
- * Use this instrument under the **specified environmental conditions**.
- * The user is only authorised to carry out the following maintenance operations:

Any other change on the equipment should be carried out by qualified personnel.

* Follow the **cleaning instructions** described in the Maintenance paragraph.

2.2 Specific precautions

CAUTION It is recommended do not watch directly the laser beam. The use of devices that are not the specified ones in this manual as well as internal manipulation of the equipment can be cause of dangerous radiation.

* Symbols related with safety:

2.3 Descriptive Examples of Over-Voltage Categories

- Cat I Low voltage installations isolated from the mains.
- Cat II Portable domestic installations.
- Cat III Fixed domestic installations.
- Cat IV Industrial installations.

3. DESCRIPTION OF CONTROLS ELEMENTS

3.1 Patch panel

Figure 1.- Patch panel.

- [1] [3] Power on and charge indicators.
- [2] Connector for AC power supply adapter.

[4] [6] Interfaces of connexion RS-232 and USB interfaces in order to connect the equipment to a PC. It allows transferring the traces stored to the PC to be analysed later.

[5] [7] Optical fibre connector Connector FC/PC and VLS (only PROLITE-52) used as optical interface.

CAUTION Invisible laser radiation.

Please always avoid looking directly at the optical output or stare at laser beam.

3.2 Keypad Functions

Figure 2.- Operation Interface of PROLITE-50/51/52.

- [1] On / Off for system.
- [2] [4] Main functions:

They allow moving within the different menus as well as to increase/decrease the value of configuration parameters.

Pressing [previously in the visualisation display of trace, allows to increase/decrease vertically the size of the trace.

[3] [8] Main functions:

They allow moving within the different menus as well as to move the cursors horizontally throughout the plan.

Pressing [_____] previously in the visualisation display of trace, allows to increase/decrease horizontally the size of the trace.

[5] Pressing it previously allows executing the secondary functions. Also it serves to cancel the zoom in / zoom out actions for trace visualisation, which has been done.

[6] Main functions:

1

This key allows going forward through pages from Help, cancelling the selected operation, exiting from configuration menu and changing between information windows from visualised trace.

Press [Shitzer] to review the previous trace events.

- [7] FindStep Key to start/stop the measurement process.
- [9] Press this key to confirm the operation selected.

Press

∽

[] to review the later trace events.

4. BASIC INFORMATION OF PROLITE-50/51/52

4.1 Principle of Prolite-50/51/52

OTDR is a measurement instrument for identifying optic fiber transmission features. The instrument is mainly used to measure attenuation of a whole optic fiber chain and provide attenuation details relating to length, namely detect, locate and measure any event in optic fiber chain (events refer to faults caused by welding, connectors, and bending whose transmission change can be measured). Its non-destructive, one-end connection, and rapid measurement has made the **PROLITE-50/51/52** an indispensable tool for manufacture, construction, and maintenance of optic fiber.

The faults and heterogeneity of optic fiber it self cause Rayleigh scattering of light pulse transmitted in optic fiber. Part of light pulse is scattered in the reverse direction, and this is called Rayleigh backward scattering, which actually provides attenuation details relating to length.

Information relating to distance is obtained through time information (that's the reason why there is "**time Domain**" in the name of **OTDR**). Fresnel reflection occurs at the boundary between two media of different **IOR** (for example, connections of faults, connectors, or optic fiber end). This reflection is used to locate the discontinuous points on optic fiber. The magnitude of reflection depends on the difference between **IOR** and the smoothness of boundary.

PROLITE-50/51/52 sends out a light pulse into connected optic fiber, and receive reflections of events and backward scattering power of pulse in time. Locus will be displayed on LCD. The y-axis is dB value of backward scattering power, and the x-axis is the distance.

4.2 Basic definition and classification of events

4.2.1 Events

Events refer to any abnormal points causing attenuation or sudden change of scattering power besides the normal scattering of optic fiber, which include all kinds of losses like bending, connections and ruptures. Events points displayed on LCD are abnormal points that cause traces to deviate from straight line.

Events can be classified as reflection events and non-reflection events.

4.2.1.1 Reflection Events

When some pulse energy is scattered, reflection events happen. When reflection event occurs, peak shows on trace, as shown in Figure 3.

Figure 3.- Reflection Event.

4.2.1.2 Non-reflection Events

Non-reflection events happen at certain points where there is some optic loss but no light scattering. When non-reflection event occurs, a power decline shows on trace, as shown in Figure 4.

Figure 4.- Non-reflection Event

4.2.1.3 Inspection Event

PROLITE-50/51/52 sends off a light pulse into the optic fiber to be inspected, and then receive returning light signals, and starts calculating the "event" distance. The farther the distance is, the longer time need for scattered light to be received by the instrument. Event distance can be calculated according to the time of receiving events signals.

Through inspection of scattered signals, properties of optic fiber, connectors, tieins can be identified.

4.3 Measurement Application of PROLITE-50/51/52

PROLITE-50/51/52 displays power relating to distance of returning signals. This information can be used to identify the main properties of an optic fiber chain.

4.3.1 Measurement Contents of PROLITE-50/51/52

- Event location (distance),end or rupture of optic fiber chain.
- Attenuation coefficient of fiber.
- Loss of a single event (for example, one optic tie-in), or total loss from upper end to end.
- Range of a single event like reflection of connectors (or grade of reflection).
- Auto measurement of cumulative loss of a single event.

4.3.2 Trace Analysis of PROLITE-50/51/52

The trace analysis of **PROLITE-50/51/52** is fully automatic. The trace locates:

- Reflection events of connections and mechanic tie-ins.
- Non-reflection events (usually at welding tie-ins).
- End of optic fiber (Through scanning the first loss event that is larger than end threshold, end of optic fiber can be identified).
- Events list: event type, loss, reflection and distance.

4.4 Trace Display Screen of PROLITE-50/51/52

Trace displays on PROLITE-50/51/52 screen, as shown in figure 5.

Figure 5.- Trace Display Screen

4.4.1 Trace Display of PROLITE-50/51/52

This window displays the trace after one measurement.

Definition of Trace: After one measurement, reflection power diagram will be displayed as distance function. This diagram is referred to as trace.

Trace of **PROLITE-50/51/52** displays measurement result in a graphic form. The y-axis stands for power, and the x-axis stands for distance, as shown in figure 6.

Figure 6.- Traces and Coordinates.

4.4.2 Information Window of PROLITE-50/51/52

Contents of this window: measurement parameters, events list, marker A/B and analysis parameters.

4.4.2.1 Measurement Trace Parameters

Important measurement and analysis parameters always display in the information window, as shown in figure 7 and 8:

Figure 7.- Measurement Trace Parameters.

Figure 8.- Analysis Trace Parameters.

For definitions and configurations of items in Figure 7 (Avg. time, Range, IOR, wave length and pulse width), refer to parameter configuration.

For definitions of items in figure 8 (date, reflection threshold, non-reflection threshold, end threshold, scattering coefficient), please refer to parameter configuration.

4.4.2.2 Event List

To indicate the location of events inspected. Any defined posts will be displayed in event list, for example, non-reflection event like welding points and reflection event like connectors, as shown in Figure 9.

Figure 9.- Events List.

No:	Event sequence No.;
Four types of events:	⊢ Fiber beginning;
	→ Attenuation event;
Loc.:	Distance from beginning point to event;
Refl.:	Magnitude of reflection;
Insl.:	Loss of Inserted event;
Attn.:	Attenuation characteristic from one event point to the current event.
Cuml.:	Cumulative loss, calculating from beginning point to the current event.

4.4.2.3 Accuracy

Marker is used to mark and analyze a single event, trace section and distance.

Distance, attenuation, loss at marker or between markers will be displayed in information of markers, as shown in figure 10.

Figure 10.- Information of Marker A/B

The following parameters are measured between marker A and B. When you change either marker, record will change accordingly.

- "A-B": Distance between two markers;
- "2 points loss": Loss between two markers; power difference between two markers.
- "2 points attenuation": 2 points loss of unit length.

The specific operations of the above are to be elaborated afterwards.

5. TRACE MEASUREMENT PROCESS

5.1 Instructions on Graphic User Interface (GUI)

After power on, power on interface displays on the LCD, as shown in Figure 11:

Figure 11.- Starting up screen.

Three seconds after power on it appears a quick help screen, and the main menu bar on the right side of the screen.

1. 2. 3.	Connect fiber to o Press 'Run / Stop ↑ or ↓ to brov ♪ To view trace Avoid Eyes Expo	optical port o' to start wse event table parameters osed to Laser!			
	Km/Div dB/ D	iv	Para	a - 1	1
Av Ra	ve. Time: s ange: km R	Samp Dist .: PulseWidth : Wavelength :		nm	Ą

Figure 12.- Help and main menu.

5.1.1 Menu Bar of PROLITE-50/51/52

On the right side of LCD display is located vertically the menu bar of the **PROLITE-50/51/52** in form of icons. Press [1] and [1] in order to move the cursor along the menu of options. Select the function by pressing [1]

No.	Icons	Meanings	
1	(S)	Parameter configuration	
2		Save file	
3	Ц,	Open file	
4	1	Re-analyze the trace	
5	 ♦+	Zoom in trace horizontally	
6	₽₽	Zoom out trace horizontally	
7		Zoom in trace vertically	
8	л 	Zoom out trace vertically	
9	A∕B	Switching between markers	
10	↑	Go to the previous event	
11	+	Go to the next event.	
12		Battery power indicator	

5.1.2 Battery Recharge Status

When the instrument is power on and powered through AC adapter, the inside batteries are automatically recharged. The meanings of signals are as follows:

The batteries are being recharged.

The batteries are fully recharged.

When the instrument is powered by inside rechargeable batteries, power volume of batteries is shown on the LCD:

5.2 Trace Measurement of PROLITE-50/51/52

One complete trace can be obtained for each measurement. Also, **PROLITE-50/51/52** can load a saved trace.

NOTE: Before each measurement, if the operator is not familiar with the cautions, please do follow instructions in this manual for personal safety.

Make sure that the optical fiber or cable is not in use and there is no laser beam in the fiber before testing via **PROLITE-50/51/52**. Otherwise, it may result in imprecise test trave, even permanent damage for the **PROLITE-50/51/52**.

Connect optic fiber to PROLITE-50/51/52 optic output directly, no tools needed.

- Pre-cleaning of connectors and splices.
- Fiber-optic measurement.
- Configuration parameters.
- Start of operation (Auto / Manual)
- Analysis of the resulting trace.

5.2.1 Parameter Configuration on PROLITE-50/51/52 on Menu Bar.

Correct parameter configuration is a necessity for accurate measurement; therefore, necessary configuration must be performed before using the instrument.

Use [and [to highlight , parameter configuration, then press [

shown in figure 12 and figure 13. Press [10] to exit.

	Range	Auto	2
1	PulseWidth	Auto	
5	Avg . Time	30 s	シ
	Wavelength	1550 nm	E.
	Meas . Mode	Averaging	ļ
	VFL	Off	L,
	Length Units	Meter [m]	1+
	IOR	1.4666	L+
	Scat . Coef .	-52.1dB	4
8	Nrefl . Thre .	0.20 dB	
A	Refl . Thre .	-52.00 dB	•
R	End Thre .	3.00 dB	× _B
IG	K : 1.4000	wavelength : 1550 r	m IIII

Figure 13.- Parameter Configuration (a).

Scat . Coef .	-52.1dB
NRefl . Thre . Refl Thre	0.20 dB -52.00 dB
End Thre .	3.00 dB
Delete File Time (y-m-d) Auto Off Lang ./ ÓïÑÔ LCD Contrast	2005 -05 -27 10 :30 :20 Off English
Color Mode	Color 2
Load Default	_
Help	

Figure 14.- Parameter Configuration (b).

Following screen shows a list of adjustable parameters.

Parameter	Definition of Parameter
Range	Length of optic fiber relevant to the trace.
Pulse Width	Width of laser pulse sending out from OTDR to optic fiber.
Average Time	To select suitable testing time.
Wavelength	To select laser wave length for measurement.
Measurement Mode	To select mode for measurement.
VFL	Power on or off visible laser(only PROLITE-52).
Length Units	To select length units.
IOR	IOR of optic fiber which affects the transmission speed of laser
Scatter Coefficient	Which affects backward scatter power of laser in fiber
Non-reflection	Events whose insertion loss is greater than the
Threshold	threshold displays here.
Reflection Threshold	Reflection events GE the threshold will be displayed.
End Threshold	The first event with insertion loss GE the threshold is considered the end of fiber, and all following events will be ignored.
Delete Files	Delete stored trace data in the instrument.
Time	Show current system time.
Auto Off	On or off of Auto off function.
Language	Choose the language
LCD Contrast	Adjust the contrast of LCD to select.
Color mode setting	Select suitable displaying color setting.
Load Default	Set all parameters to factory setting
Help	Show help files (Quick Reference)

Range Configuration

Generally, range will be set according to actual length of optic fiber, so as to insure the accuracy of measurement.

Under the parameters configuration menu, use **[11]** and **[11]** to select "**Range**"; Press **[11]** to access.

Use [] and [] to select adequate range; Press [] to confirm, or press to exit, as shown in Figure 15.

Range	Auto	
PulseWidth	300 m	
Avg . Time	1.3km	
Wavelength	2.5km	
Meas . Mode	5km	
VFL	10 km	
Length Units	20 km	
IOR	40 km	
Scat . Coef .	80 km	
Nrefl . Thre .	160 km	
Refl . Thre .	240 km	
End Thre	270 Km	

Figure 15.- Range Configuration.

NOTE: There are 11 levels of predefined scales : Auto, 300 m, 1.3 Km, 2.5 Km, 5 Km, 10 Km, 20 Km, 40 Km, 80 Km, 160 Km and 240 Km.

«Auto» means the automatic measurement. When this function is selected, the instrument will automatically make an intelligent selection of adequate range and pulse width for measurement. The whole process of measurement does not need any intervention of the operator.

«Auto» means the default settings.

• Pulse Width Configuration

The selection of pulse width affects the dynamic range and resolution of measurement trace. With narrow pulse width, there will be higher resolution and smaller dead zone, however, the dynamic range will be decreased. On the contrary, wide pulse width can bring higher dynamic range and measure comparatively long distance, but resolution and dead zone will be affected. Therefore, users should make choice between dynamic range and dead zone.

There will be different pulse width options for reference according to different range of distance being chosen.

Range	30 ns	
PulseWidth	100 ms	
Avg . Time	200 ns	
Wavelength	1 0 115	
Meas . Mode	1.0us	
VFL	2.5us	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	-52.1dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	-52.00 dB	
End Thre .	3.00 dB	

Figure 16.- Average Time Configuration.

Average Time Configuration

Average time will affect the SNR directly. The longer the average time is, the higher SNR is, as well as dynamic range. Therefore, in case of measurement of long-distance optic fiber, long average time should be selected in order to review events at long-distance end.

Range PulseWidth	15 s		7	
Avg . Time	30 s			
Wavelength	1 min			
Meas . Mode	2 min			
VFL	3 min			
Length Units				
OR	1.4666			
Scat . Coef .	- 52 . 1 dB			
Nrefl . Thre .	0.20 dB			
Refl . Thre .	- 52.00 dB			
End Thre .	3.00 dB			
: 1.4000	wavelength	:	1550	nm

Figure 17.- Average Time Configuration.

NOTE: There are 5 levels of predefined average time: 15 s, 30 s, 1 min, 2 min and 3 min. The default setting is 30 s.

• Wavelength Configuration

The PROLITE-50/51/52 works with different wavelengths (see specifications).

Under parameter configuration, use [4] and [7] to highlight "wavelength";

press [11] to change wavelength, as shown in Figure 18.-.

Range	Auto	
PulseWidth	Auto	
Avg . Time	1310 nm	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	-52.1dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	-52 .00 dB	
End Thre .	3.00 dB	
K : 1.4000	wavelength : 1550	nm

Figure 18.- Wavelength Configuration

Measurement Mode Configuration

There are two kinds of measurement mode: Averaging and Real time mode. Under Real time Mode, **PROLITE-50/51/52** will undertake realtime measurement for the connector of exterior fiber and refurbish the measure trace. While under Real time Mode, press key [1000] to stop, otherwise it will measure all along. Under Averaging Mode, **PROLITE-50/51/52** will average the data within the measure time which is set by user. While exceeding the set time, it will stop automatically and display the result. Generally, we suggest **Averaging Mode**.

Under menu of parameter configuration, use [A] and [V] to highlight "Measurement Mode"; Press [

shown in Figure 19.-. Press [

Range	Auto		
PulseWidth	Auto		
Avg . Time	30 s		
Wavelength	1550 nm		
Meas . Mode	Averaging		
VFL	Off		
Length Units	Meter [m]		
IOR	1.4666		
Scat . Coef .	-52.1dB		
Nrefl . Thre .	0.20 dB		1
Refl . Thre .	-52.00 dB		1
End Thre .	3.00 dB		
K : 1.4000	wavelength	: 1	oov nm

Figure 19.- Measurement Mode Configuration.

• VFL - Visual Fault Locator (For PROLITE-52 only).

Under parameter configuration, use $[\]$ and $[\]$ to highlight "VFL"; according to different demand, press $[\]$ to select CW, 1Hz or off, Press $[\]$ to exit When VFL is on, $[\]$ icon will be displayed under $\]$ icon, which is in the right menu bar. as in Figure 20.-.

Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	CW	
Length Units IOR	Meter [m] 1.4666	
Scat . Coef .	- 52 . 1 dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	- 52.00 dB	
End Thre .	3.00 dB	L
1 4666	Wavelength	: 1550 nm

Figure 20.- VFL Configuration.

• Setting the units of length

Under the parameter configuration menu use [1] and [1] to highlight "Length Units"; press [1] to select the desired units of measurement, as in Figure 21. Press

	A30.554				B
	Range	Auto			J
1	PulseWidth	Auto	_		3
	Avg . Time Wavelength	Meter[m]			Į
	Meas . Mode	Feet[ft]			7
	VFL	Miles[mi]			Ļ
	Length Units	wieter [m]	_		1*
	IOR	1.4666			L+
	Scat . Coef .	-52.1dB			4
8	Nrefl . Thre .	0.20 dB			
A	Refl . Thre .	-52.00 dB			
R	End Thre .	3.00 dB			¥ _B
ю	K : 1.4000	wavelength	:	1330 nm	

Figure 21.- Length Units Configuration.

• Refractive index setting (IOR)

IOR is a key factor to affect the speed of laser transmission in optic fiber; and in this case, **IOR** configuration has direct impact on the accuracy of measurement. Generally speaking, the **IOR** parameter is provided by optic fiber manufacturer, and it can be set to the accuracy of four digits after decimal point between 1.0-2.0.

USER'S MANUAL. PROLITE-50/51/52

Under parameter configuration, use [1] and [1] to highlight "Scatter Coefficient"; press [1] to enter, as shown in figure 23. Press [1] to exit.

PROMA

Range	Auto
PulseWidth	Auto
Avg . Time	30 s
Wavelength	1550 nm
Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	- 5 2.1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52 .00 dB
End Thre .	3.00 dB
C : 1.4000	wavelengtn : 1550 nn

Figura 23.- Scatter Coefficient Configuration.

change the digits. After setting, press [____] to confirm.

Non reflection Threshold Configuration ٠

This configuration has direct impact on the listing of insertion loss events. Only events GE this threshold will be listed.

Under parameter configuration, use [2] and [2] to highlight "Non reflection threshold"; press [100] to enter, as shown in figure 24. Press [100] to exit.

A 30.554		
Range	Auto	
PulseWidth	Auto	
Avg . Time	30 s	
Wavelength	1550 nm	
Meas . Mode	Averaging	
VFL	Off	
Length Units	Meter [m]	
IOR	1.4666	
Scat . Coef .	- 52 . 1 dB	
Nrefl . Thre .	0.20 dB	
Refl . Thre .	- 52 .00 dB	
End Thre .	3.00 dB	L
: 1.4000	wavelength : 1550 nr	m

Figure 24.- Non-reflection Thereshold Configuration.

USER'S MANUAL. PROLITE-50/51/52				
Use [] and [] to adjust the position of highlights; use [] and []] to change the digits. After setting, press []] to confirm.				
NOTE : The default setting is 0.20 dB.				
Reflection Threshold Configuration				
This configuration has direct impact on reflection events listing. Only reflection				
Under parameter configuration, use [A] and [V] to highlight " reflection				
threshold"; press [200] to enter, as shown in figure 25. Press [200] to exit.				
Range Auto PulseWidth Auto Avg . Time 30 s Wavelength 1550 nm Meas . Mode Averaging VFL Off Length Units Meter [m] IOR 1.4666 Scat . Coef . -52.1dB Nrefl . Thre . 0.20 dB Refl . Thre . \$2.00 dB IOK : 1.4000 Wavelengtn : 1.520 nm				
Use [] and [] to adjust the position of highlights; use [] and [] [] to change the digits. After setting, press [] to confirm.				
NOTE : The default setting is -52.00 dB.				

End Threshold Configuration

This threshold is the end threshold of optic fiber. If the end threshold equals 3.0 dB, then the first event with insertion loss GE 3 dB will be considered as the end of the optic fiber. If the value is set to 0 dB, there will be no end threshold.

Under parameter configuration, use [] and [] to highlight "End threshold": press [11] to enter, as shown in figure 26. Press [12] to exit. A 20 EE4 Auto Range PulseWidth Auto 30 s Avg . Time Wavelength 1550 nm Meas . Mode Averaging Off VFL Length Units Meter [m] IOR 1.4666 * Scat . Coef -52.1dB 11 8 Nrefl . Thre 0.20 dB Refl . Thre -52.00 dB A ¥_B 03.00 dB End Thre R IOK : 1.4000 wavelength : 1550 nm [Figure 26.- End Threshold Configuration. Use [] and [] to adjust the position of highlights: use [] and [change the digits. After setting, press [____] to confirm. NOTE: The default setting is 3.00 dB. **Delete File** This function is designed to delete saved traces.

Select file :	118 / 300
Trace 001	27 - May - 2005 10 : 30
Trace 002	Range : 80 km
Trace 003	Pwidth : 2.5us
Trace 004	Wavelen .: 1550 nm
Trace 005	
Trace 006	
K Trace 007	Open Cancel
vg Trace 008	Cancer
ange : 80 km	PulseWidth : 2.5us
DR : 1.4666	Wavelength : 1550 nm

Figure 27.- Delete File.

Press [] and [] to choose the files to be deleted, then press [] to confirm. Users can delete one or several files by one time. Press [] and [] to choose "Delete". Press [] [], according to the instruction, choose "Yes" to delete; choose "No" to not delete. If choose "Cancel", it will exit the file delete menu.

• Time Configuration

Time configuration is used to change system time.

Under parameter configuration, use [A] and [V] to highlight "Time"; press

Avg . Time	30 s
Wavelength	1550 nm
Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre	3.00 dB
Delete File	
Time (y-m-d)	20 05 - 05 - 27 10 : 30 : 20

Figure 28.- Time Configuration.

Use [4] and [4] to adjust the position of highlights; use [4] and [4]

change the digits. After setting, press [

Auto off Configuration

This function is designed for conserving battery power. If auto off is on, the instrument will auto power off within 5 minutes of idleness.

Under parameter configuration, use [4] and [4] to highlight "Auto off"; press

		ARTICAZO		3
		PulseWidth	Auto	2
	\	Ave. lime	30s	2
		Wavelength	1550nm	
		Meas. Mode	Averaging	
		I OR	1.4659	↓
		Scat. Coef.	- 51. 50dB	Ļ
		Nrefl.Thre.	0. 20dB	+
		Refl. Thre.	- 52. 00dB	*
		End Thre.	3.00dB	i 👬
	1	Delete File		Β́
1	Δ	Time(y-m-d)	2005-05-27 10:30:20	
	R	Auto Off	Of f	F
	Ιu	K . 1.4009	waverengtn: 1550nm	(UN)

Figure 29.- Auto Off configuration.

NOTE: The default setting is «auto off» on.

Language Configuration

Meas . Mode	Averaging
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	- 52 . 1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	- 52.00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Off
Lang.	English

Figure 30.- Language Configuration.

• Contrast Adjustment of LCD display

The contrast of LCD has been adjusted. And users can adjust the contrast according to their own visual habits.

press [[]] to adjust, as shown in figure 31. Press [[]] to exit.

ARTEST .	0.00
VFL	Off
Length Units	Meter [m]
IOR	1.4666
Scat . Coef .	-52.1dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	-52.00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Low High
Lang ./ ÓïÑÔ	
LCD Contrast	
3 : 1.4666	Wavelength : 1550 nm

Figure 31.- Contrast adjustment of LCD display.

Color Mode Setting

This configuration allows choosing between four combinations of different colours. Use [

680.554		-
Length Units	Meter[m]	
IOR	1.4666	
Scat.Coef.	- 52.1 dB	
Nrefl. Thre.	0.20dB	
Refl.Thre.	- 52.00 dB	
End Thre.	3.00dB	
Delete File		
Time(y-m-d)	2005-05-27 10:30:20	
Auto Off	Color1	
Lang./Ó 🕅	Color2	
LCD Contrast	Color3	
Color Mode	Black/White	
K : 1.4000	wavelength: 1550nm	đ

Figure 32.- Color Mode Setting.

Use [and [to highlight suitable color mode setting; press [to confirm the selection.

Defaults Set

IOR	1.4666
Scat . Coef .	- 52 . 1 dB
Nrefl . Thre .	0.20 dB
Refl . Thre .	- 52 .00 dB
End Thre .	3.00 dB
Delete File	
Time $(y - m - d)$	2005 -05 -27 10 :30 :20
Auto Off	Off
Lang ./ ÓïÑÔ	English
LCD Contrast	5
Color Mode	No
Load Default	Vas

Figure 33.- Load Defaults.

• Help

Users can get the quick reference via "Help" menu.

Under parameter configuration, Use [4] and [4] to highlight "Help"; Press

1.1	: Machilacetta :			ы
	Scat.Coef.	- 51. 50dB		7
	Nrefl. Thre.	0.20dB		2
	Refl.Thre.	- 52. 00dB		
	End Thre.	3.00dB		ΞĻ
	Delete File	1		7
	Time(y-m-d)	2005-05-27 1	0:30:20	IL.
	Auto Off	Of f		·+ 14
	Lang. / Ó 🖏	Enalish		L÷
	LCD Contrast	5		4
1	Color Mode	Color 2		⊮́B
	Load Default			
R	Help			ŀ
I.C		waveiengtn:	1550nm	

Figure 34.- Help.

Figure 35.- Help.

Figure 36.- Help.

5.2.2 Trace Measurement - Auto

Auto measurement can be applied in case that the length of optic fiber is unidentifiable. **Prolite-50/51/52** auto select adequate range for measurement.

Steps for Auto measurement:

- Parameter configuration: for detailed operations, please refer to 3.4.3.2, Parameter Configuration on Prolite-50 Menu Bar. Set range to "AUTO".
- Measure: press [1000] to start measurement, and the interface is as shown in figure 37 and 38.

Figure 37.- Measuring.

While the measurement is done, it appears the following information on screen.

"Total: 00:30"...... Measure time which is set by user is 30 seconds.

"Passed: 00:16"..... Total measurement time has passed 16 seconds.

• After a certain period of time, the trace displays on the **GUI**. The trace in the Figure below is a trace during measurement, which will be refreshed for every certain period of time to demonstrate the whole process to users in real time. But at the end of measurement, the trace will be final, as shown in figure 39.

Figure 39.- Trace Measurement of PROLITE-50/51/52.

5.2.3 Trace Measurement - Manual

If the operators have full knowledge of measured optic fiber, they can set accurate parameters, and achieve optimal measurement results.

- Set the parameters: Refer to the section; Configuration of parameters.
- Measure: Press [intermal] to start measurement. The process is the same with Auto measurement.

5.2.4 Trace Measurement – Reasons of Measurement Failures

If measurement failures occur, reasons may be one of the following:

- Events may be too close to each other.
 Shorten the pulse width, and make another try. If failure still occurs, please try to measure at the other end of the optic fiber.
- Low SNR. Try to use wider pulse or increase average time, and make another try.
- Incorrect parameter configuration. Check parameter configuration, and make another try.

5.3 Information Window

Items of information window: measurement parameters, analysis parameters, and information regarding marker A/B.

For details regarding information window, please refer to 4.4.2 **Prolite-50/51/52** information window.

5.3.1 Switch between Information Window Items

Under **GUI** of figure 39, press [\checkmark] and the items of information window will display in circulation: measurement parameter \rightarrow analysis information \rightarrow Event list \rightarrow information of marker A/B \rightarrow measurement parameter.

5.3.2 Review Event List

Under GUI of figure 40, press [16], items in information window will switch to event list information.

5.3.3 Cursors

The **PROLITE-50/51/52** has two cursors (A and B) available which can be displaced throughout the trace in order to provide specific information about each point. In order to exchange the active cursor to use $\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$ to select the $\frac{4}{B}$ icon, later press $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ to switch between marker $\frac{4}{B}$.

Use [

Press [11] to change the information window to A or B marker.

Press $\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$ to change the position of the marker A or B, and the information of ${}^{A}B$ marker will change in agreement with the information window.

5.4 Increasing and decreasing of the trace visualization

In order to be able to visualize the events more accurately, the equipment incorporates the increasing and decreasing functions of trace visualization.

- The function indicated with [+] icon in menu, serves to increase the trace horizontally, whereas the [+] icon serves to diminish it.
- The function indicated with the [1] icon in menu serves to increase the trace vertically, whereas the [1] icon serves to diminish it.

Use [

The visualisation of the plan can be increased up to 10 times. In the case of the horizontal increase, the zone of plan of the cursor will be centred in display that is active.

Use [4] and [1] to move cursors more accurately through the trace.

The cursor (A/B) switching function as well as movement through events $[\bullet]$ and $[\bullet]$ does not modify the visualization of the plan and automatically it centres on screen the cursor or event selected with these functions. The increasing / decreasing function, also can be executed by means of a combination of hotkeys for quick access.

- In order to decrease the trace horizontally to keep pressed [
 Stitute]
 and later [
- In order to increase the trace vertically to keep pressed [^{Shift}/4] and later [^A
- In order to decrease the trace vertically to keep pressed [
 Shift yee] and later [

5.5 Save Trace

When auto or manual measurement is finished, the measurement trace can be saved. Contents of trace saved include: Trace curve, related information of trace.

• Under GUI of figure 40, use [A] and [V] to highlight I, and press [

Figure 40.- Save Trace

- Input filename: use [4], [4], [4] and [4] to choose the alphanumeric character one by one, and press [Enter] to confirm. The length of filename will not exceed 8 characters alphanumeric.
- Save file: use [¹], [¹], [¹] and [¹] to highlight "OK", press [Enter] to save.
- Cancel saving file: use [A], [V], [I] and [I] to highlight "cancel", press [Enter] to cancel the operation of "save file".
- Delete alphanumeric character: use [A], [V], [A] and [D] to highlight "Delete", press [Enter] to delete the alphanumeric character.
- Memory space: 118/300 means that total memory space is 300 files; it has already saved 118 files so far

5.6 Browse Saved Traces

Figure 41.- Browse Saved Traces

- Use [] and [] to select a certain trace, in the right part of the screen appears general information about the trace selected. Use [] and [] to select [Open] or [Cancel]. Press [Enter] to confirm.
- Memory space: 118/300 means that total memory space is 300 files; it has already saved 118 files so far.

5.7 Upload Saved Traces

Saved traces can be uploaded to PC through the associated software of trace manager, with which traces can be further processed on PC.

- Install the software, and run.
- Power off PROLITE-50/51/52.
- Connect PROLITE-50/51/52 to PC through RS232 (or USB) interface cable.
- Power on **PROLITE-50/51/52**, and upload data with the software. The whole process is as shown in figure 42.

NOTE: Make sure the instrument is power off when connecting to PC through RS232 (or USB) data cable; Make sure it's fastened, then power on.

6. MAINTENANCE

6.1 Maintenance of Batteries

Battery for this instrument is rechargeable NiMH battery. All the NiMH batteries have been correctly installed and gone thorough precise debugging. Please do not open the instrument to replace batteries at discretion.

Cautions during Operation:

The following may bring auto power off of the instrument:

- The instrument will be auto power off when there is insufficient power during operation and low power will be shown on the LCD.
- If unused for a long time and cause insufficient power, the instrument will be power off several seconds after powering on so as to protect the batteries in case of excessive discharging. The inside batteries should be recharged immediately through adapter.

NOTE: Notes for maintenance of batteries in the instrument:

In order for the **PROLITE-50/51/52** (including the batteries) to meet specifications, the storage temperature should be within 0 °C to 40 °C. And the instruments should be stored in low humidity environments.

One rechargeable NiMH battery is inside the instrument. Do not replace the battery by yourself.

If the instrument is left unused for a long time (idle for over 2 months), it is recommended to recharge the battery every other month.

• Procedure of replacing the clock battery.

- To take off cover of the battery cell;.
- To remove the battery NiMH to the equip.
- Under the battery is the backup battery for internal clock. Replace if necessary it must be of type.

Button cell 3V Li CR1220.

Connect and replace the NiMH battery.

Figure 43.- Replacing the clock Battery.

6.2 Cleaning of Interfaces

Interfaces must be kept clean. Special alcohol may be used to clean optic output. Always replace protective dust caps when the unit is not being used, and keep the protective dust caps clean.

In addition, flanges must be kept clean periodically,

• Effects of Cleaning Interfaces and Connectors

The diameter of optic core is 9um, and diameter of dust and other particulates ranges from 1/100 to 1/1/10 um. Comparatively speaking, the size of dust and other particulates can cover part of optic end and therefore degrade the performance of the instrument.

In addition, power density may burn dust into optic fiver and induce further damage (for example, 0dBm optic power may produce about 16000000 W/m*m power density in single mode fiber). In this case, measurement will be inaccurate and irreversible.

Safety Instructions to be Followed before Cleaning

- a) Make sure the instrument is power off when cleaning.
- b) Any operations contradict to the instructions may result in dangerous laser injuries.
- c) Make sure laser source is off, when clean any optic connectors.
- d) When the instrument is in operation, please always avoid looking directly into optic output. Although laser radiation is invisible, it may do serious injury to eyesight.
- e) Be cautious of electric shock and make sure AC power is disconnected with the instrument before cleaning. Always use dry or moistest soft cloth to clean the outside of the instrument, and never clean the inside.
- Please do not add any accessory to optic instrument or adjust the instrument at discretion.
- g) For maintenance, always go to qualified or certified professionals.

• Tools for Cleaning Interfaces and Connectors

- a) Optic fiber cleaner (for cleaning of optic connectors).
- b) Optic fiber cleaning rod (for cleaning of optic outputs).
- c) Optic fiber cleaning tissue (for cleaning optic interfaces).
- d) Isopropyl alcohol.
- e) Cotton ball.
- f) Paper tissue.
- g) Cleaning brush.
- h) Condensed air.

• Preferred Procedure for Cleaning Interfaces and Connectors

As in figure 44. Preferred Procedure is as follows

- a) Screw off the cap of flange.
- b) Pinch the ceramics core between the thumb and the forefinger, rotate meanwhile pull it out slowly.
- c) Clean the laser head carefully.
- d) Mount the ceramics core.
- e) Screw on the cap of flange.

Figure 44.- Structure of Flange.
6.3 Calibration Requeriments

Calibration of the instrument is recommended every two years. Please contact our representatives or nearby customer service centers for proper calibration.

6.4 Cleaning Recommendations

CAUTION

To clean the cover, take care the instrument is disconnected.

CAUTION

Do not use scented hydrocarbons or chlorized solvents. Such products may attack the plastics used in the construction of the cover.

The cover should be cleaned by means of a light solution of detergent and water applied with a soft cloth.

Dry thoroughly before using the system again.

